Exemplo n.º 1
0
 def forward_with_rotation_matrices_mask(self, xs, hat_xs):
     """Forward errors with rotation matrices"""
     N = xs.shape[0]
     masks = xs[:, :, 3].unsqueeze(1)
     masks = torch.nn.functional.conv1d(
         masks, self.weight, bias=None,
         stride=self.min_train_freq).double().transpose(1, 2)
     masks[masks < 1] = 0
     Xs = SO3.exp(xs[:, ::self.min_train_freq, :3].reshape(-1, 3).double())
     hat_xs = self.dt * hat_xs.reshape(-1, 3).double()
     Omegas = SO3.exp(hat_xs[:, :3])
     # compute increment at min_train_freq by decimation
     for k in range(self.min_N):
         Omegas = Omegas[::2].bmm(Omegas[1::2])
     rs = SO3.log(bmtm(Omegas, Xs)).reshape(N, -1, 3)[:, self.N0:]
     loss = self.f_huber(rs)
     # compute increment from min_train_freq to max_train_freq
     for k in range(self.min_N, self.max_N):
         Omegas = Omegas[::2].bmm(Omegas[1::2])
         Xs = Xs[::2].bmm(Xs[1::2])
         masks = masks[:, ::2] * masks[:, 1::2]
         rs = SO3.log(bmtm(Omegas, Xs)).reshape(N, -1, 3)[:, self.N0:]
         rs = rs[masks[:, self.N0:].squeeze(2) == 1]
         loss = loss + self.f_huber(rs[:, 2]) / (2**(k - self.min_N + 1))
     return loss
Exemplo n.º 2
0
    def plot_orientation_error(self, imu_Rots, net_Rots, N):
        gt = self.gt['Rots'][:N].cuda()
        raw_err = 180/np.pi*SO3.log(bmtm(imu_Rots, gt)).cpu()
        net_err = 180/np.pi*SO3.log(bmtm(net_Rots, gt)).cpu()
        title = "$SO(3)$ orientation error"
        fig, axs = plt.subplots(3, 1, sharex=True, figsize=self.figsize)
        axs[0].set(ylabel='roll (deg)', title=title)
        axs[1].set(ylabel='pitch (deg)')
        axs[2].set(xlabel='$t$ (min)', ylabel='yaw (deg)')

        for i in range(3):
            axs[i].plot(self.ts, raw_err[:, i], color='red', label=r'raw IMU')
            axs[i].plot(self.ts, net_err[:, i], color='blue', label=r'net IMU')
            axs[i].set_ylim(-10, 10)
            axs[i].set_xlim(self.ts[0], self.ts[-1])
        self.savefig(axs, fig, 'orientation_error')
Exemplo n.º 3
0
 def forward_with_rotation_matrices(self, xs, hat_xs):
     """Forward errors with rotation matrices"""
     N = xs.shape[0]
     Xs = SO3.exp(xs[:, ::self.min_train_freq].reshape(-1, 3).double())
     hat_xs = self.dt * hat_xs.reshape(-1, 3).double()
     Omegas = SO3.exp(hat_xs[:, :3])
     # compute increment at min_train_freq by decimation
     for k in range(self.min_N):
         Omegas = Omegas[::2].bmm(Omegas[1::2])
     rs = SO3.log(bmtm(Omegas, Xs)).reshape(N, -1, 3)[:, self.N0:]
     loss = self.f_huber(rs)
     # compute increment from min_train_freq to max_train_freq
     for k in range(self.min_N, self.max_N):
         Omegas = Omegas[::2].bmm(Omegas[1::2])
         Xs = Xs[::2].bmm(Xs[1::2])
         rs = SO3.log(bmtm(Omegas, Xs)).reshape(N, -1, 3)[:, self.N0:]
         loss = loss + self.f_huber(rs) / (2**(k - self.min_N + 1))
     return loss
Exemplo n.º 4
0
    def plot_orientation_err(self):
        title = "Position error as function of time " + self.end_title
        err = SO3.log(bmtm(self.gt['Rots'].cuda(),
                           self.iekf['Rots'].cuda())).cpu()
        fig, axs = plt.subplots(3, 1, sharex=True, figsize=self.figsize)
        axs[0].set(ylabel='roll (deg)', title=title)
        axs[1].set(ylabel='pitch (deg)')
        axs[2].set(xlabel='$t$ (min)', ylabel='yaw (deg)')

        for i in range(3):
            axs[i].plot(self.ts, err[:, i], color="blue")
            axs[i].set_xlim(self.ts[0], self.ts[-1])
        self.savefig(axs, fig, 'orientation_error')
Exemplo n.º 5
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'dataset-room1_512_16_gt.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0", "mocap0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)

        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            if 'room' not in sequence:
                continue

            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            t_gt = gt[:, 0] / 1e9
            gt = self.interpolate(gt, t_gt, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = SO3.qnorm(torch.Tensor(gt[:, 4:8]).double())
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.zeros_like(p_gt).double()
            v_gt[1:] = (p_gt[1:] - p_gt[:-1]) / self.dt
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # masks with 1 when ground truth is available, 0 otherwise
            masks = dxi_ij.new_ones(dxi_ij.shape[0])
            tmp = np.searchsorted(t_gt, ts[:-mtf])
            diff_t = ts[:-mtf] - t_gt[tmp]
            masks[np.abs(diff_t) > 0.01] = 0

            # save all the sequence
            mondict = {
                'xs': torch.cat((dxi_ij, masks.unsqueeze(1)), 1).float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")

            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")
Exemplo n.º 6
0
    def read_data(self, data_dir):
        r"""Read the data from the dataset"""

        f = os.path.join(self.predata_dir, 'MH_01_easy.p')
        if True and os.path.exists(f):
            return

        print("Start read_data, be patient please")

        def set_path(seq):
            path_imu = os.path.join(data_dir, seq, "mav0", "imu0", "data.csv")
            path_gt = os.path.join(data_dir, seq, "mav0",
                                   "state_groundtruth_estimate0", "data.csv")
            return path_imu, path_gt

        sequences = os.listdir(data_dir)
        # read each sequence
        for sequence in sequences:
            print("\nSequence name: " + sequence)
            path_imu, path_gt = set_path(sequence)
            imu = np.genfromtxt(path_imu, delimiter=",", skip_header=1)
            gt = np.genfromtxt(path_gt, delimiter=",", skip_header=1)

            # time synchronization between IMU and ground truth
            t0 = np.max([gt[0, 0], imu[0, 0]])
            t_end = np.min([gt[-1, 0], imu[-1, 0]])

            # start index
            idx0_imu = np.searchsorted(imu[:, 0], t0)
            idx0_gt = np.searchsorted(gt[:, 0], t0)

            # end index
            idx_end_imu = np.searchsorted(imu[:, 0], t_end, 'right')
            idx_end_gt = np.searchsorted(gt[:, 0], t_end, 'right')

            # subsample
            imu = imu[idx0_imu:idx_end_imu]
            gt = gt[idx0_gt:idx_end_gt]
            ts = imu[:, 0] / 1e9

            # interpolate
            gt = self.interpolate(gt, gt[:, 0] / 1e9, ts)

            # take ground truth position
            p_gt = gt[:, 1:4]
            p_gt = p_gt - p_gt[0]

            # take ground true quaternion pose
            q_gt = torch.Tensor(gt[:, 4:8]).double()
            q_gt = q_gt / q_gt.norm(dim=1, keepdim=True)
            Rot_gt = SO3.from_quaternion(q_gt.cuda(), ordering='wxyz').cpu()

            # convert from numpy
            p_gt = torch.Tensor(p_gt).double()
            v_gt = torch.tensor(gt[:, 8:11]).double()
            imu = torch.Tensor(imu[:, 1:]).double()

            # compute pre-integration factors for all training
            mtf = self.min_train_freq
            dRot_ij = bmtm(Rot_gt[:-mtf], Rot_gt[mtf:])
            dRot_ij = SO3.dnormalize(dRot_ij.cuda())
            dxi_ij = SO3.log(dRot_ij).cpu()

            # save for all training
            mondict = {
                'xs': dxi_ij.float(),
                'us': imu.float(),
            }
            pdump(mondict, self.predata_dir, sequence + ".p")
            # save ground truth
            mondict = {
                'ts': ts,
                'qs': q_gt.float(),
                'vs': v_gt.float(),
                'ps': p_gt.float(),
            }
            pdump(mondict, self.predata_dir, sequence + "_gt.p")