Exemplo n.º 1
0
    def get_training_object(self):
        model = get_torchvision_model(self.net_type, self.pretrained,
                                      self.classes, self.loss)
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        model = model.to(device)
        if self.weight_path is not None:
            state_dict = torch.load(self.weight_path)
            # state_dict = state_dict["state"]
            model.load_state_dict(state_dict)

        #### optimizer
        optimizer = torch.optim.Adam(model.parameters(),
                                     lr=self.lr,
                                     betas=(0.9, 0.999))
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
            optimizer, mode="max", factor=self.factor, patience=self.patience)
        #         model = nn.DataParallel(model)
        #  scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=10)

        #         loss_criteria =torch.nn.BCELoss()
        if self.loss.startswith("focal"):
            loss_criteria = FocalLoss(gamma=self.gamma)
        else:
            loss_criteria = nn.BCEWithLogitsLoss()
        return model, loss_criteria, optimizer, scheduler
Exemplo n.º 2
0
def forward_pass(_run, pretrained_model_id, test_batch_size, data_files, model_params, eer_criteria, class_labels):
    """ forward pass dev and eval data to trained model  """

    use_cuda = torch.cuda.is_available()  # use cpu
    device = torch.device("cuda" if use_cuda else "cpu")
    tmp = torch.tensor([2]).to(device)

    # model is RNN  
    if model_params['MODEL_SELECT'] == 4:
        use_rnn = True
    else:
        use_rnn = False

    # model is trained with focal loss objective 
    if model_params['FOCAL_GAMMA']:
        print('training with focal loss')
        focal_obj = FocalLoss(gamma=model_params['FOCAL_GAMMA'])
    else:
        focal_obj = None

    kwargs = {'num_workers': 2, 'pin_memory': True} if use_cuda else {}

    # create model
    # cnx
    model = E2E(**model_params).to(device)
    num_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('===> Model total parameter: {}'.format(num_params))

    if pretrained_model_id:
        pretrain_pth = 'snapshots/' + str(pretrained_model_id) + '/model_best.pth.tar'
        #pretrain_pth = '../pretrained/pa/senet34_py3'
        if os.path.isfile(pretrain_pth):
            print("===> loading checkpoint '{}'".format(pretrain_pth))
            # python 2
            checkpoint = torch.load(pretrain_pth, map_location=lambda storage, loc: storage)  # load for cpu
            model.load_state_dict(checkpoint['state_dict'], strict=False)
            # python 3
            # checkpoint = torch.load(pretrain_pth)
            # model.load_state_dict(checkpoint, strict=False)
            print("===> loaded checkpoint '{}'"
                  .format(pretrain_pth))
        else:
            print("===> no checkpoint found at '{}'".format(pretrain_pth))
            exit()

    # Data loading code (class analysis for multi-class classification only)
    val_data = SpoofDatsetSystemID(data_files['dev_scp'], data_files['dev_utt2index'], binary_class=False)
    # val_data = SpoofDatsetEval(data_files['dev_scp'])
    # eval_data = SpoofDatsetEval(data_files['eval_scp'])
    val_loader = torch.utils.data.DataLoader(val_data,
                                             batch_size=test_batch_size,
                                             shuffle=False, **kwargs)
    # eval_loader = torch.utils.data.DataLoader(
    #     eval_data, batch_size=test_batch_size, shuffle=False, **kwargs)

    # forward pass for dev
    print("===> forward pass for dev set")
    score_file_pth = os.path.join(data_files['scoring_dir'], str(pretrained_model_id) + '-dev_scores.txt')
    print("===> dev scoring file saved at: '{}'".format(score_file_pth))
    prediction(val_loader, model, device, score_file_pth, data_files['dev_utt2systemID'], use_rnn, focal_obj)
Exemplo n.º 3
0
    def __init__(self, num_anchors=9, num_classes=20, compound_coef=0):
        super(EfficientDet, self).__init__()
        self.compound_coef = compound_coef

        self.num_channels = [64, 88, 112, 160, 224, 288, 384, 384][self.compound_coef]

        self.conv3 = nn.Conv2d(48, self.num_channels, kernel_size=1, stride=1, padding=0)#40
        self.conv4 = nn.Conv2d(96, self.num_channels, kernel_size=1, stride=1, padding=0)#80
        self.conv5 = nn.Conv2d(232, self.num_channels, kernel_size=1, stride=1, padding=0)#192
        self.conv6 = nn.Conv2d(232, self.num_channels, kernel_size=3, stride=2, padding=1)#192
        self.conv7 = nn.Sequential(nn.ReLU(),
                                   nn.Conv2d(self.num_channels, self.num_channels, kernel_size=3, stride=2, padding=1))

        self.bifpn = nn.Sequential(*[BiFPN(self.num_channels) for _ in range(min(2 + self.compound_coef, 8))])

        self.num_classes = num_classes
        self.regressor = Regressor(in_channels=self.num_channels, num_anchors=num_anchors,
                                   num_layers=3 + self.compound_coef // 3)
        self.classifier = Classifier(in_channels=self.num_channels, num_anchors=num_anchors, num_classes=num_classes,
                                     num_layers=3 + self.compound_coef // 3)

        self.anchors = Anchors()
        self.regressBoxes = BBoxTransform()
        self.clipBoxes = ClipBoxes()
        self.focalLoss = FocalLoss()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        prior = 0.01

        self.classifier.header.weight.data.fill_(0)
        self.classifier.header.bias.data.fill_(-math.log((1.0 - prior) / prior))

        self.regressor.header.weight.data.fill_(0)
        self.regressor.header.bias.data.fill_(0)

        self.backbone_net = EfficientNet()
Exemplo n.º 4
0
    def __init__(self, config):
        super(EfficientDet, self).__init__()
        self.is_training = config.is_training
        self.nms_threshold = config.nms_threshold
        model_conf = EFFICIENTDET[config.network]
        self.num_channels = model_conf['W_bifpn']
        input_channels = model_conf['EfficientNet_output']
        self.convs = []
        self.conv3 = nn.Conv2d(input_channels[0],
                               self.num_channels,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.conv4 = nn.Conv2d(input_channels[1],
                               self.num_channels,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.conv5 = nn.Conv2d(input_channels[2],
                               self.num_channels,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.conv6 = nn.Conv2d(input_channels[3],
                               self.num_channels,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.conv7 = nn.Conv2d(input_channels[4],
                               self.num_channels,
                               kernel_size=1,
                               stride=1,
                               padding=0)
        self.convs.append(self.conv3)
        self.convs.append(self.conv4)
        self.convs.append(self.conv5)
        self.convs.append(self.conv6)
        self.convs.append(self.conv7)

        self.bifpn = nn.Sequential(
            *[BiFPN(self.num_channels) for _ in range(model_conf['D_bifpn'])])

        self.num_classes = config.num_classes
        self.anchors = Anchors()
        self.regressor = Regressor(in_channels=self.num_channels,
                                   num_anchors=self.anchors.num_anchors,
                                   num_layers=model_conf['D_class'])
        self.classifier = Classifier(in_channels=self.num_channels,
                                     num_anchors=self.anchors.num_anchors,
                                     num_classes=self.num_classes,
                                     num_layers=model_conf['D_class'])

        self.regressBoxes = BBoxTransform()
        self.clipBoxes = ClipBoxes()
        self.focalLoss = FocalLoss()

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()

        prior = 0.01

        self.classifier.header.weight.data.fill_(0)
        self.classifier.header.bias.data.fill_(-math.log((1.0 - prior) /
                                                         prior))

        self.regressor.header.weight.data.fill_(0)
        self.regressor.header.bias.data.fill_(0)

        if config.resume:
            self.backbone_net = EfficientNet.from_name(
                model_conf['EfficientNet'])
        else:
            self.backbone_net = EfficientNet.from_pretrained(
                model_conf['EfficientNet'])
Exemplo n.º 5
0
        
        with torch.no_grad():
            valid_loss, valid_loss_min = Validate(model, validloader, criterion, valid_loss_min, device, model_sv_pth)
            
        stats.append([train_loss, valid_loss])
        stat = pd.DataFrame(stats, columns=['train_loss', 'valid_loss'])

    print('Finished Training')
    if plot: plotCurves(stat)


if __name__ == "__main__":
    
    #Define transforms for the training data and validation data
    train_transforms = transforms.Compose([transforms.Resize(input_size, 0)])
    valid_transforms = transforms.Compose([transforms.Resize(input_size, 0)])

    #pass transform here-in
    train_data = CamVid_Dataset(img_pth = path + 'train/', mask_pth = path + 'train_labels/', transform = train_transforms)
    valid_data = CamVid_Dataset(img_pth = path + 'val/', mask_pth = path + 'val_labels/', transform = valid_transforms)

    #data loaders
    trainloader = torch.utils.data.DataLoader(train_data, batch_size=batch, shuffle=True)
    validloader = torch.utils.data.DataLoader(valid_data, batch_size=batch, shuffle=True)

    model = UNet(3, 32, True).to(device)
    criterion = FocalLoss()
    optimizer = optim.SGD(model.parameters(), lr=lr, momentum=0.99)

    train(model, trainloader, validloader, criterion, optimizer, epochs, device, load_model_pth, model_sv_pth, plot=True, visualize=True, load_model=False)
Exemplo n.º 6
0
def work(_run, pretrained, batch_size, test_batch_size, epochs, start_epoch, log_interval, n_warmup_steps, data_files,
         model_params, eer_criteria, leave_one_out):
    global best_acc1
    global best_eer

    use_cuda = torch.cuda.is_available()
    device = torch.device("cuda" if use_cuda else "cpu")
    tmp = torch.tensor([2]).to(device)

    # model is trained for binary classification (for datalaoder) 
    if model_params['NUM_SPOOF_CLASS'] == 2:
        binary_class = True
    else:
        binary_class = False

    # model is RNN  
    if model_params['MODEL_SELECT'] == 4:
        use_rnn = True
    else:
        use_rnn = False

    if model_params['FOCAL_GAMMA']:
        print('training with focal loss')
        focal_obj = FocalLoss(gamma=model_params['FOCAL_GAMMA'])
    else:
        focal_obj = None

    kwargs = {'num_workers': 2, 'pin_memory': True} if use_cuda else {}

    # create model
    # cnx
    model = E2E(**model_params).to(device)
    model_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('===> Model total parameter: {}'.format(model_params))

    # Wrap model for multi-GPUs, if necessary
    if torch.cuda.is_available() and torch.cuda.device_count() > 1:
        print('multi-gpu')
        model = nn.DataParallel(model).cuda()

    # define loss function (criterion) and optimizer
    # cnx 
    optimizer = ScheduledOptim(
        torch.optim.Adam(
            filter(lambda p: p.requires_grad, model.parameters()),
            betas=(0.9, 0.98), eps=1e-09, weight_decay=1e-4, amsgrad=True),
        n_warmup_steps)

    # optionally resume from a checkpoint
    if pretrained:
        if os.path.isfile(pretrained):
            print("===> loading checkpoint '{}'".format(pretrained))
            checkpoint = torch.load(pretrained)
            start_epoch = checkpoint['epoch']
            if eer_criteria and 'best_eer' in checkpoint:
                best_eer = checkpoint['best_eer']
            else:
                best_acc1 = checkpoint['best_acc1']
                print("===> Best accuracy: %f" % best_acc1)
            model.load_state_dict(checkpoint['state_dict'])
            optimizer.load_state_dict(checkpoint['optimizer'])
            print("===> loaded checkpoint '{}' (epoch {})"
                  .format(pretrained, checkpoint['epoch']))
        else:
            print("===> no checkpoint found at '{}'".format(pretrained))

    cudnn.benchmark = True  # It enables benchmark mode in cudnn.

    # Data loading code
    train_data = SpoofDatsetSystemID(data_files['train_scp'], data_files['train_utt2index'],
                                     rnd_nslides=True,
                                     binary_class=binary_class,
                                     leave_one_out=leave_one_out)
    val_data = SpoofDatsetSystemID(data_files['dev_scp'], data_files['dev_utt2index'],
                                   binary_class=binary_class,
                                   leave_one_out=leave_one_out)
    train_loader = torch.utils.data.DataLoader(
        train_data, batch_size=batch_size, shuffle=True, **kwargs)
    val_loader = torch.utils.data.DataLoader(
        val_data, batch_size=test_batch_size, shuffle=False, **kwargs)
    if leave_one_out:
        eval_data = SpoofDatsetSystemID(data_files['dev_scp'], data_files['dev_utt2index'], binary_class, False)
        eval_loader = torch.utils.data.DataLoader(
            eval_data, batch_size=test_batch_size, shuffle=False, **kwargs)
    else:
        eval_loader = val_loader

    best_epoch = 0
    early_stopping, max_patience = 0, 5  # for early stopping
    for epoch in range(start_epoch, start_epoch + epochs):

        # train for one epoch
        train(train_loader, model, optimizer, epoch, device, log_interval, use_rnn, focal_obj)

        # evaluate on validation set
        acc1 = validate(val_loader, data_files['dev_utt2systemID'], model, device, log_interval,
                        use_rnn, eer_criteria, focal_obj)

        # remember best acc@1/eer and save checkpoint
        if eer_criteria:
            is_best = acc1 < best_eer
            best_eer = min(acc1, best_eer)
        else:
            is_best = acc1 > best_acc1
            best_acc1 = max(acc1, best_acc1)

        # adjust learning rate + early stopping 
        if is_best:
            early_stopping = 0
            best_epoch = epoch + 1
        else:
            early_stopping += 1
            if epoch - best_epoch > 2:
                optimizer.increase_delta()
                best_epoch = epoch + 1
        if early_stopping == max_patience:
            break

        # save model
        if not is_best:
            continue
        if eer_criteria:
            save_checkpoint({
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'best_eer': best_eer,
                'optimizer': optimizer.state_dict(),
            }, is_best, "snapshots/" + str(_run._id), str(epoch) + ('_%.3f' % acc1) + ".pth.tar")
        else:
            save_checkpoint({
                'epoch': epoch,
                'state_dict': model.state_dict(),
                'best_acc1': best_acc1,
                'optimizer': optimizer.state_dict(),
            }, is_best, "snapshots/" + str(_run._id), str(epoch) + ('_%.3f' % acc1) + ".pth.tar")

    # load best model 
    best_model_pth = os.path.join('snapshots', str(_run._id), 'model_best.pth.tar')
    score_file_pth = os.path.join(data_files['scoring_dir'], str(_run._id) + '-scores.txt')
    print("===> loading best model for scoring: '{}'".format(best_model_pth))
    checkpoint = torch.load(best_model_pth)
    model.load_state_dict(checkpoint['state_dict'])

    # compute EER 
    print("===> scoring file saved at: '{}'".format(score_file_pth))
    prediction(eval_loader, model, device, score_file_pth, data_files['dev_utt2systemID'], use_rnn, focal_obj)