def plot_voltage_ipsp(ax, v_mat, ipsp_mat):
    colors = ['b', 'g', 'r']
    labels = [
        r'$ref_{init}^{MSN}$', r'$ref_{max}^{MSN}$', r'$ref_{25 Hz}^{GPe}$'
    ]

    coords = [[0.64, 0.3], [0.1, 0.29], [0.55, 0.7]]
    for i, color in enumerate(colors):
        ax.plot(v_mat[i, :], ipsp_mat[i, :], **{'color': color})

    ax.set_ylabel('IPSP amplitude (mV)')
    ax.set_xlabel('Holding potential (mV)')

    ax.set_xlim(misc.adjust_limit([-80, -65]))
    #ax.set_ylim(misc.adjust_limit([-4,2]))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[-80, -65])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'] + 2,
                **{'color': color})
    ax.my_set_no_ticks(yticks=8, xticks=6)
Exemplo n.º 2
0
def plot_example_3x_freq(ax, times, spk_mean, hzs=[10, 20, 40]):
    spk_mean = spk_mean
    colors = misc.make_N_colors('YlOrBr', 5)[2:]

    labels = ['%i Hz' % hzs[0], '%i Hz' % hzs[1], '%i Hz' % hzs[2]]
    coords = [[0.4, 0.52], [0.05, 0.22], [0.1, 0.74]]
    for i, col in enumerate(colors):
        ax.plot(times,
                misc.convolve(spk_mean[i, :], 50, 'triangle', single=True)[0],
                color=col)
        #ax.plot(times, spk_mean[i,:], col)

    lines = ax.lines
    for line in lines:
        line.set_xdata(line.get_xdata() - ADJUST_XDATA_MS)
        misc.slice_line(line, xlim=[0, 1490])
    #ax.set_ylim([0,40])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=font_size_text,
                **{'color': color})

    ax.set_ylabel('Rate SNr (spikes/s)')
    ax.set_xlabel('Time (ms)')

    ax.my_set_no_ticks(yticks=6, xticks=8)
    ax.set_xlim(misc.adjust_limit([0, 1500]))
    ax.set_ylim(misc.adjust_limit([0, 40]))
Exemplo n.º 3
0
def plot_selection_vs_neurons_full(ax, hzs, data):

    colors = ['b', 'g', 'm']
    labels = [
        r'$\delta_{weak}^{MSN}$', r'$\delta_{strong}^{MSN}$',
        r'$\delta_{fac}^{MSN}$'
    ]
    coords = [[0.03, 0.8], [0.05, 0.07], [0.03, 0.50]]

    syn = SYNAPSE_MODELS_TESTED

    for id, label, color in zip([0, 1, 2], labels, colors):
        ax.plot(hzs, data[syn[id]]['thrVec'], **{'color': color})

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    ax.set_xlabel('Frequency MSN (Hz)')
    ax.set_ylabel('MSNs at thr (#)')
    ax.my_set_no_ticks(yticks=6, xticks=6)

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    ax.set_xlim(misc.adjust_limit([0, 48]))
    ax.set_ylim(misc.adjust_limit([0, 75]))
Exemplo n.º 4
0
def plot_SNr_rate_vs_syn_event1(ax, syn_events, meanRates):

    colors = ['k']
    labels = [r'$\delta_{dep}^{GPe}$']
    coords = [[0.1, 0.15]]

    for id, label, color in zip([0], labels, colors):
        ax.plot(syn_events, meanRates[id, :], **{'color': color})

    vec = [0, 800]

    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Synaptic events (#/s)')
    ax.my_set_no_ticks(yticks=6, xticks=5)

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 800])

    ax.set_xlim(misc.adjust_limit([0, 800]))
    ax.set_ylim(misc.adjust_limit([20, 115]))
Exemplo n.º 5
0
def plot_selection_vs_neurons_indirect_linear_fit_and_spread(ax, mods, slope):
    colors = ['b', 'g', 'r']
    labels = [r'First 100 ms', r'250-350 ms', r'Last 100 ms']
    coords = [[0.55, 0.15], [0.07, 0.47], [0.15, 0.78]]

    ps = []
    for i, color in enumerate(colors):
        ax.plot(mods, slope[i, :], **{'color': color, 'linestyle': '-'})
        #x,y,dy=fit_pol(MSNmeanRates,SNRmeanRates[i,:])
        #ax.plot(x,y,**{'color':color})
    '''
    ax.plot([0,2.5],[SELECTION_THR]*len([0,2]),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    
    ax.text( 0.8, 0.20,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})
    '''
    ax.set_ylabel('$\Delta_{SNr}/ \Delta_{MSN_{D2}}$')
    ax.set_xlabel('Percent bursting $MSN_{D2}$ (%)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    #ax.set_xlim(misc.adjust_limit([15, 50]))
    ax.set_ylim(misc.adjust_limit([0, 1.3]))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 50])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=12,
                **{'color': color})
Exemplo n.º 6
0
def plot_selection_vs_neurons_full_extra(ax, hzs, data):
    colors = ['b', 'g', 'm']
    labels = [
        r'$\delta_{weak}^{MSN}$', r'$\delta_{strong}^{MSN}$',
        r'$\delta_{fac}^{MSN}$'
    ]

    syn = SYNAPSE_MODELS_TESTED
    for id, label, color in zip([0, 1, 2], labels, colors):
        ax.plot(hzs, data[syn[id]]['thrVec'], **{
            'color': color,
            'linestyle': '--'
        })

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '--k')
    leg = ax.legend(
        [line1, line2],
        ['First 200 ms of \nthe burst', '300-500 ms of \nthe burst'],
        loc='best')
    frame = leg.get_frame()
    #frame.set_visible(False)
    pylab.setp(frame, edgecolor='w')
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=10., backgroundcolor='w')

    ax.set_xlim(misc.adjust_limit([-7, 48]))
    ax.set_ylim(misc.adjust_limit([0, 100]))
Exemplo n.º 7
0
def plot_SNr_rate_vs_syn_event1(ax, syn_events, meanRates, meanRatesStd):

    colors = ['k']
    labels = [r'$\delta_{fac}^{MSN}$']
    coords = [[0.04, 0.16]]

    for id, label, color in zip([2], labels, colors):
        ax.plot(syn_events, meanRates[id, :], **{'color': color})


#        ax.fill_between(syn_events, meanRates[id,:]+meanRatesStd[id,:],
#                        meanRates[id,:]-meanRatesStd[id,:],
#                        facecolor=color, alpha=0.5)

    vec = [50, 600]
    ax.plot(
        vec, [SELECTION_THR] * len(vec), **{
            'color': [0.6, 0.6, 0.6],
            'label': '',
            'linewidth': 1,
            'linestyle': '--'
        })

    ax.text(0.8,
            0.17,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})
    ax.set_ylabel('Frequency SNr (Hz)')
    ax.set_xlabel('Synaptic events (#/s)')
    ax.my_set_no_ticks(yticks=6, xticks=5)

    x_arrow = 285. / 600.
    y_arrow = 2. / 50.

    ax.arrow(x_arrow,
             y_arrow,
             0,
             0.02,
             transform=ax.transAxes,
             width=0.01,
             head_width=0.03,
             head_starts_at_zero=True,
             head_length=0.02,
             **{'color': 'k'})

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 600])

    ax.set_xlim(misc.adjust_limit([50, 600]))
    ax.set_ylim(misc.adjust_limit([0, 35]))
Exemplo n.º 8
0
def plot_SNr_rate_vs_syn_event2(ax, nbNeurons, meanRates):
    colors = ['k']
    ax.plot(nbNeurons, meanRates[2, :], **{
        'color': colors[0],
        'linestyle': '-.'
    })

    ax.set_ylabel('Frequency SNr (Hz)')
    ax.set_xlabel('Synaptic events (#/s)')
    ax.my_set_no_ticks(yticks=5, xticks=5)

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '-.k')
    leg = ax.legend(
        [line1, line2],
        ['Bursting subpopulation', 'Increased activity  in \nall MSNs'],
        loc='best')
    frame = leg.get_frame()
    frame.set_visible(False)
    ltext = leg.get_texts()  # all the text.Text instance in the legend

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 600])

    pylab.setp(ltext, fontsize=10.)
    ax.set_xlim(misc.adjust_limit([50, 600]))
    ax.set_ylim(misc.adjust_limit([0, 35]))
Exemplo n.º 9
0
def plot_example_rebound_spike(ax, SNR):
    SNR.signals['V_m'].plot(display=ax, kwargs={'color': 'k'})
    ax.set_xlim(misc.adjust_limit([300, 1000]))
    ax.set_ylim(misc.adjust_limit([-85, 30]))
    line = ax.lines
    misc.slice_line(line[0], xlim=[300, 1000])

    ax.my_set_no_ticks(yticks=3, xticks=6)
    ax.set_ylabel('SNr potential (mV)')
Exemplo n.º 10
0
def plot_steady_state_freq(ax, freq_, relative_fac):
    colors = ['b', 'g', 'm']
    linestyles = ['--', '--', '-']
    labels = [
        r'$ref_{init}^{MSN_{D1}}$', r'$ref_{max}^{MSN_{D1}}$',
        r'$fac^{MSN_{D1}}$'
    ]
    coords = [[0.1, 0.22], [0.2, 0.74], [0.65, 0.45]]
    syn_static = ['MSN_SNR_gaba_s_min', 'MSN_SNR_gaba_s_max']

    ax.plot(freq_, relative_fac[0, :], **{'color': colors[2]})
    ytext = ax.set_ylabel(r'$p_{ss}$/$p_1$')
    #pylab.setp(ytext, fontsize=14.)

    ax.set_xlabel('Firing rate (spikes/s)')
    ax.my_set_no_ticks(yticks=5, xticks=5)

    my_nest.ResetKernel()
    model_list, model_dict = models()
    syns = [SYNAPSE_MODELS[0]]
    syns.extend(syn_static)

    my_nest.MyLoadModels(model_list, syns)
    xdata = ax.lines[0].get_xdata()
    ss = my_nest.GetDefaults(SYNAPSE_MODELS[0])
    synapticEficacy = ss['weight'] * ss['U']

    for syn, color, ls in zip(syn_static, colors[0:2], linestyles[0:2]):

        sw = my_nest.GetDefaults(syn)
        ax.plot(
            [min(xdata), 48],
            [sw['weight'] / synapticEficacy, sw['weight'] / synapticEficacy],
            **{
                'color': color,
                'linestyle': ls
            })

    for coord, label, color in zip(coords, labels, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['font.size'] + 2,
                **{'color': color})

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    ax.set_xlim(misc.adjust_limit([0, 50]))
    ax.set_ylim(misc.adjust_limit([0, 5]))

    ax.my_set_no_ticks(yticks=6, xticks=6)

    pylab.setp(ax.lines,
               linewidth=2.0)  # Need to pu ti before generating legend
Exemplo n.º 11
0
def plot_selection_vs_neurons_full(ax, hzs, data):

    colors = ['b', 'g', 'm']
    labels = [
        r'$ref_{init}^{MSN_{D1}}$', r'$ref_{max}^{MSN_{D1}}$',
        r'$fac_{MSN_{D1}}$'
    ]
    coords = [[0.03, 0.8], [0.05, 0.07], [0.03, 0.50]]

    syn = SYNAPSE_MODELS_TESTED

    for id, label, color in zip([0, 1, 2], labels, colors):
        ax.plot(hzs,
                numpy.array(data[id]['msn_at_thr'][0]) / float(N_MSN) * 100.,
                **{'color': color})

    for id, label, color in zip([0, 1, 2], labels, colors):
        ax.plot(hzs,
                numpy.array(data[id]['msn_at_thr'][1]) / float(N_MSN) * 100.,
                **{
                    'color': color,
                    'linestyle': '--'
                })

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    ax.set_xlabel(r'Rate $MSN_{D1}$ (spikes/s)')
    ax.set_ylabel(r'Bursting $MSN_{D1}$ at thr (%)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '--k')
    leg = ax.legend(
        [line1, line2],
        ['First 100 ms of \nthe burst', 'Last 100 ms of \nthe burst'],
        loc='best')
    frame = leg.get_frame()
    #frame.set_visible(False)
    pylab.setp(frame, edgecolor='w')
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=font_size_text, backgroundcolor='w')

    ax.set_xlim(misc.adjust_limit([6, 48]))
    ax.set_ylim(misc.adjust_limit([0, 30]))
Exemplo n.º 12
0
def plot_indirect(ax, data, idx_show=[0, 1, 2], title='', ylim=[0, 34]):
    colors = ['k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k', 'k']
    labels = [r'1 % bursting', r'2 % bursting', r'4 % bursting']
    linestyles = [
        '-', '--', '-.', '-', '--', '-.', '-', '--', '-.', '-', '--', '-.'
    ]
    coords = [[0.4, 0.42], [0.02, 0.001], [0.15, 0.78]]
    data = [data[i] for i in idx_show]

    for i, d in enumerate(data):

        lb = r'%i %s bursting' % (d[0][0], '%')

        x, y_mean, y_std = d.take([1, 2, 3], axis=0)
        ax.plot(
            x, y_mean, **{
                'color': colors[i],
                'label': lb,
                'linestyle': linestyles[i]
            })

        ax.fill_between(x,
                        y_mean - y_std,
                        y_mean + y_std,
                        facecolor=colors[i],
                        alpha=0.5)

    pylab.setp(ax.lines,
               linewidth=2.0)  # Need to pu ti before generating legend
    leg = ax.legend(loc='best')
    frame = leg.get_frame()
    frame.set_visible(False)
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=font_size_text)
    '''
    ax.plot([0,2.5],[SELECTION_THR]*len([0,2]),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    ax.text( 0.8, 0.20,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})
    
    '''
    ax.set_ylabel('Rate SNr (spikes/s)')
    ax.set_xlabel('Burst rate $MSN_{D2}$ (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)
    ax.set_title(title, fontsize=font_size_text)
    ax.set_xlim(misc.adjust_limit([15, 50]))
    ax.set_ylim(misc.adjust_limit(ylim))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 50])
Exemplo n.º 13
0
def plot_example_SNR(ax, SNR_list):
    time_bin = 20

    colors = ['r', 'c']
    labels = [r'$\delta_{ref}^{GPe}$', r'$\delta_{dep}^{GPe}$']
    coords = [[0.05, 0.60], [0.05, 0.2]]

    SNR_list = [SNR_list[0], SNR_list[1]]

    for color, label, SNR in zip(colors, labels, SNR_list):
        signal = SNR.signals['spikes']
        signal.my_firing_rate(bin=time_bin,
                              display=ax,
                              kwargs={'color': color})

    lines = ax.lines
    lines[0].set_xdata(lines[0].get_xdata() - ADJUST_XDATA_MS)
    lines[1].set_xdata(lines[1].get_xdata() - ADJUST_XDATA_MS)

    ax.plot([0, 1690], [SELECTION_THR] * len([0, 2990]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.9,
            0.13,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    misc.slice_line(lines[0], xlim=[0, 1690])
    misc.slice_line(lines[1], xlim=[0, 1690])

    #ax.set_title('bin=%i'%(time_bin),**{'fontsize':12})
    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Time (ms)')
    ax.my_set_no_ticks(yticks=6, xticks=8)

    ax.set_xlim(misc.adjust_limit([0, 1700]))
    ax.set_ylim(misc.adjust_limit([0, 50]))

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})
def plot_example_SNR(ax, SNR_list, flag):
    time_bin=20
    
    colors=misc.make_N_colors('cool',3)
    
    colors=['m','c',colors[1]]   
    #labels=[r'$\delta_{fac}^{MSN}$' , r'$\delta_{dep}^{GPe}$',  
    #        r'$\delta_{fac}^{MSN}$+$\delta_{dep}^{GPe}$']
    coords=[[0.05, 0.2], [ 0.05, 0.65], [0.05, 0.8]]


    
    SNR_list=[SNR_list[0], SNR_list[1], SNR_list[2]]
    
    
    for color, SNR in zip(colors, SNR_list):
        signal=SNR.signals['spikes']
        signal.my_firing_rate(bin=time_bin, display=ax, kwargs={'color':color})
    
    lines = ax.lines
    for line in lines:
        line.set_xdata(line.get_xdata()-ADJUST_XDATA_MS)
        misc.slice_line(line, xlim=[0,1490])
        
    if flag==0:
        leg=ax.legend(lines,['Burst in MSN subpopulation' , 'Burst in GPe subpopulation',  
            'Burst in both MSN- and GPe subpopulations'], loc=2)
    if flag==1:
        leg=ax.legend(lines,['Burst in MSN subpopulation' , 'Pause in GPe subpopulation',  
            'Burst in MSN- and pause in GPe subpopulations'], loc=2)
    
    frame  = leg.get_frame() 
    #frame.set_visible(False) 
    pylab.setp(frame, edgecolor='w') 
    ltext  = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=12., backgroundcolor='w') 
   
    ax.plot([0, 1490],[SELECTION_THR]*len([0, 1490]),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    ax.text( 0.9, 0.11,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})   
       
    #ax.set_title('bin=%i'%(time_bin),**{'fontsize':12})
    ax.set_ylabel('Firing rate SNr (spikes/s)') 
    ax.set_xlabel('Time (ms)')
    ax.my_set_no_ticks( yticks=7, xticks=8 ) 

    ax.set_xlim(misc.adjust_limit([0,1500]))
    ax.set_ylim(misc.adjust_limit([0,115]))
Exemplo n.º 15
0
def plot_selection_vs_neurons_direct(ax, MSNmeanRates, SNRmeanRates):
    colors = ['b', 'g', 'm']
    labels = [
        r'$\delta_{weak}^{MSN}$', r'$\delta_{strong}^{MSN}$',
        r'$\delta_{fac}^{MSN}$'
    ]
    coords = [[0.4, 0.42], [0.02, 0.001], [0.15, 0.78]]

    for i, color in enumerate(colors):
        ax.plot(MSNmeanRates, SNRmeanRates[i, :], **{
            'color': color,
            'marker': '.',
            'linestyle': ''
        })
        #x,y,dy=fit_pol(MSNmeanRates,SNRmeanRates[i,:])
        #x,y,dy=fit_exp(MSNmeanRates,SNRmeanRates[i,:])
        #ax.plot(x,y,**{'color':color})

    ax.plot([0, 2.5], [SELECTION_THR] * len([0, 2]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.8,
            0.20,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Firing rate MSN (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    ax.set_xlim(misc.adjust_limit([0, 50]))
    ax.set_ylim(misc.adjust_limit([0, 34]))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 50])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})
Exemplo n.º 16
0
def plot_selection_vs_neurons(ax, GPEmeanRates, SNRmeanRates):
    colors = ['b', 'b', 'g', 'g']

    linestyles = ['-', '--', '-', '--']

    for i, color in enumerate(colors):
        ax.plot(GPEmeanRates[i, :], SNRmeanRates[i, :], **{
            'color': color,
            'linestyle': linestyles[i]
        })

    vec = [0, 100]

    ax.set_ylabel('Rate SNr (spikes/s)')
    ax.set_xlabel(r'Rate $MSN_{D2}$ (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '--k')
    pylab.setp(ax.lines,
               linewidth=2.0)  # Need to pu ti before generating legend
    leg = ax.legend([line1, line2], ['$dep^{GPe}$', '$ref_{32 Hz}^{GPe}$'],
                    loc='best')
    frame = leg.get_frame()
    frame.set_visible(False)
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(frame, edgecolor='w')
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext,
               fontsize=pylab.rcParams['text.fontsize'] - 2,
               backgroundcolor='w')

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 100])

    labels = ['Static \nSTN-SNr', 'Depressing \nSTN-SNr']
    coords = [[0.55, 0.3], [0.3, 0.6]]
    colors = ['b', 'g']
    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=font_size_text,
                **{'color': color})
    ax.set_xlim(misc.adjust_limit([0, 4]))
    ax.set_ylim(misc.adjust_limit([25, 150]))
def plot_filtering(ax, MSNmeanRates, SNRmeanRates):
    colors = ['b', 'g', 'm']
    linestyle = ['--', '--', '-']
    labels = [
        r'$ref_{init}^{MSN_{D1}}$', r'$ref_{max}^{MSN_{D1}}$',
        r'$fac^{MSN_{D1}}$'
    ]
    coords = [[0.4, 0.42], [0.02, 0.001], [0.15, 0.78]]

    for i, color in enumerate(colors):
        ax.plot(MSNmeanRates, SNRmeanRates[i, :], **{
            'color': color,
            'linestyle': linestyle[i]
        })

    ax.plot([0, 2.5], [SELECTION_THR] * len([0, 2]), **{
        'color': 'k',
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.8,
            0.20,
            'Thr',
            fontsize=pylab.rcParams['font.size'] - 2,
            transform=ax.transAxes,
            **{'color': 'k'})

    ax.set_ylabel('Rate SNr (spikes/s)')
    ax.set_xlabel('Rate $MSN_{D1}$ (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    ax.set_xlim(misc.adjust_limit([0, 2.5]))
    ax.set_ylim(misc.adjust_limit([-3, 34]))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 2.6])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['font.size'],
                **{'color': color})
    pylab.setp(ax.lines,
               linewidth=2.0)  # Need to pu ti before generating legend
Exemplo n.º 18
0
def plot_example_SNR(ax, SNR_list):
    time_bin = 20

    colors = ['b', 'g', 'm']
    labels = [
        r'$\delta_{weak}^{MSN}$', r'$\delta_{strong}^{MSN}$',
        r'$\delta_{fac}^{MSN}$'
    ]
    coords = [[0.4, 0.49], [0.05, 0.27], [0.1, 0.75]]

    for color, SNR in zip(colors, SNR_list):
        signal = SNR.signals['spikes']
        signal.my_firing_rate(bin=time_bin,
                              display=ax,
                              kwargs={'color': color})

    lines = ax.lines
    for line in lines:
        line.set_xdata(line.get_xdata() - ADJUST_XDATA_MS)
        misc.slice_line(line, xlim=[0, 1490])

    ax.plot([0, 1490], [SELECTION_THR] * len([0, 1490]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.9,
            0.15,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    #ax.set_title('bin=%i'%(time_bin),**{'fontsize':12})
    ax.set_ylabel('Frequency SNr (Hz)')
    ax.set_xlabel('Time (ms)')
    ax.my_set_no_ticks(yticks=6, xticks=7)

    ax.set_xlim(misc.adjust_limit([0, 1500]))
    ax.set_ylim(misc.adjust_limit([0, 40]))

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})
def plot_diff_3x_freq(ax, times, spk_mean ):
    spk_mean=spk_mean
    colors=['b','g','r']
    for i, col in enumerate(colors):
        #ax.plot(times, misc.convolve(spk_mean, 50, 'triangle',single=True)[0]*1000,col)
        ax.plot(times, spk_mean[i,:], col)

    lines = ax.lines
    for line in lines:
        line.set_xdata(line.get_xdata()-ADJUST_XDATA_MS)    
        misc.slice_line(line, xlim=[0,1490])
    #ax.set_ylim([0,40])
    
    ax.set_xlim(misc.adjust_limit([0,1500]))
    ax.set_ylim(misc.adjust_limit([0,40]))
    pylab.show()
Exemplo n.º 20
0
def plot_example_snr(ax, SNR):
    time_bin = 20
    signal = SNR.signals['spikes']
    colors = ['k']

    sim_time = 2500

    hist = signal.spike_histogram(time_bin=1, normalized=True)
    spk_mean = numpy.mean(hist, axis=0)
    spk_mean = misc.convolve(spk_mean, 100, 'triangle', single=True)[0]
    time = numpy.arange(1, len(spk_mean) + 1)
    ax.plot(time, spk_mean, 'k')

    ax.my_set_no_ticks(yticks=6, xticks=7)
    lines = ax.lines

    lines = ax.lines
    for line in lines:

        misc.slice_line(line, xlim=[50, 2450])

    ax.plot([0, sim_time], [SELECTION_THR] * len([0, sim_time]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.9,
            0.14,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})
    misc.slice_line(lines[0], xlim=[0, sim_time])

    ax.plot([1000, 1500], [39, 39], color='k', marker='|')
    ax.text(0.47, 0.84, 'stop', transform=ax.transAxes, **{'color': 'k'})

    ax.plot([500, 700], [30, 30], color='k', marker='|')
    ax.text(0.23, 0.67, '1st', transform=ax.transAxes, **{'color': 'k'})

    ax.plot([1500, 1700], [30, 30], color='k', marker='|')
    ax.text(0.60, 0.67, '2nd', transform=ax.transAxes, **{'color': 'k'})

    ax.set_xlim(misc.adjust_limit([0, sim_time]))
    ax.set_ylim(misc.adjust_limit([0, 45]))

    ax.set_ylabel('Firing rate SNr (spikes/s)')
Exemplo n.º 21
0
def plot_rate_first_and_second_bursts_full(ax, x, data):
    colors = ['k']
    max_delay = 3100

    ax.text(0.1,
            0.4,
            r'$\delta_{fac}^{MSN}$',
            fontsize=pylab.rcParams['text.fontsize'],
            transform=ax.transAxes,
            **{'color': colors[0]})

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '-.k')
    leg = ax.legend([line1, line2], ['1st', '2nd'], loc='best')
    frame = leg.get_frame()
    frame.set_visible(False)

    ax.plot([0, max_delay], [SELECTION_THR] * len([0, max_delay]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.8,
            0.3,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    ax.plot(x, data[0], **{'label': '1st', 'color': colors[0]})
    ax.plot(x, data[1], **{
        'label': '2nd',
        'color': colors[0],
        'linestyle': '-.'
    })
    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Burst stop (ms)')
    ax.my_set_no_ticks(yticks=6, xticks=5)

    lines = ax.lines
    misc.slice_line(lines[2], xlim=[0, max_delay])
    misc.slice_line(lines[3], xlim=[0, max_delay])

    ax.set_xlim(misc.adjust_limit([0, max_delay]))
    ax.set_ylim(misc.adjust_limit([3, 10]))
def plot_selection_vs_neurons_full(ax, hzs, data):

    colors = ['m']
    labels = [r'$\delta_{fac}^{MSN}$']  # , r'$\delta_{strong}^{MSN}$',
    # r'$\delta_{fac}^{MSN}$']
    coords = [[0.03, 0.8]]  #, [ 0.05, 0.07], [0.03, 0.50]]

    syn = SYNAPSE_MODELS_TESTED

    for id, label, color in zip([0], labels, colors):
        ax.plot(hzs, data[id]['msn_at_thr'][0], **{'color': color})

    #for id, label, color in zip([0,1,2],labels,colors):
    #    ax.plot(hzs,data[id]['msn_at_thr'][1],**{'color':color,'linestyle':'--'})

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    ax.set_xlabel('Firing rate MSN (spikes/s)')
    ax.set_ylabel('Bursting MSNs at thr (#)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    line1 = ax.plot(1, 1, '-k')
    line2 = ax.plot(1, 1, '--k')
    leg = ax.legend(
        [line1, line2],
        ['First 100 ms of \nthe burst', 'Last 100 ms of \nthe burst'],
        loc='best')
    frame = leg.get_frame()
    #frame.set_visible(False)
    pylab.setp(frame, edgecolor='w')
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=10., backgroundcolor='w')

    ax.set_xlim(misc.adjust_limit([6, 48]))
    ax.set_ylim(misc.adjust_limit([0, 100]))
Exemplo n.º 23
0
def plot_selection_vs_neurons_direct2(ax, data, title, ylim=[0, 34]):
    colors = ['k', 'k', 'k', 'k']
    labels = [r'1 % bursting', r'2 % bursting', r'4 % bursting']
    linestyles = ['-', '--', '-.', '.']
    coords = [[0.4, 0.42], [0.02, 0.001], [0.15, 0.78]]

    for i, d in enumerate(data):

        c = 'k'
        lb = r'%i %s bursting' % (d[0][0], '%')
        ls = '--'

        x, y_mean, y_std = d.take([1, 2, 3], axis=0)
        ax.plot(x, y_mean, **{'color': c, 'label': lb, 'linestyle': ls})

        ax.fill_between(x,
                        y_mean - y_std,
                        y_mean + y_std,
                        facecolor=c,
                        alpha=0.5)

    #x,y,dy=fit_pol(MSNmeanRates,SNRmeanRates[i,:])
    #ax.plot(x,y,**{'color':color})
    leg = ax.legend(loc='best')
    frame = leg.get_frame()
    frame.set_visible(False)
    ltext = leg.get_texts()  # all the text.Text instance in the legend
    pylab.setp(ltext, fontsize=10.)
    '''
    ax.plot([0,2.5],[SELECTION_THR]*len([0,2]),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    ax.text( 0.8, 0.20,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})
    
    '''
    ax.set_ylabel('Rate SNr (spikes/s)')
    ax.set_xlabel('Burst rate $MSN_{D1}$ (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)
    ax.set_title(title, fontsize=12)
    ax.set_xlim(misc.adjust_limit([15, 50]))
    ax.set_ylim(misc.adjust_limit(ylim))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 50])
def plot_selection_vs_neurons(ax, GPEmeanRates, SNRmeanRates):
    colors=['r','c' ] 
    labels=[r'$\delta_{ref}^{GPe}$' , r'$\delta_{dep}^{GPe}$']
    coords=[[0.15, 0.6], [ 0.4, 0.17]]
    
    for i, color in enumerate(colors):
        ax.plot(GPEmeanRates,SNRmeanRates[i,:],**{'color':color})  
    
    
    vec=[0,100]
    ax.plot(vec,[SELECTION_THR]*len(vec),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    ax.text( 0.05, 0.08,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})   
    ax.set_ylabel('Firing rate SNr (spikes/s)') 
    ax.set_xlabel('Firing rate GPe (spikes/s)')
    ax.my_set_no_ticks( yticks=8, xticks=8 )
    
    
        
    SNRmr=SNRmeanRates[1,SNRmeanRates[1,:]<25]
    GPEmr=GPEmeanRates[SNRmeanRates[1,:]<25]
    GPEmr=GPEmr[SNRmr>=6.5]
    SNRmr=SNRmr[SNRmr>=6.5]+7
    
    #x_arrow=GPEmr[-1]
    #y_arrow=SNRmr[-1]
    
    #ax.arrow(x_arrow, y_arrow, 0, -2,
    #width=1, head_width=3, head_starts_at_zero=True,
    #head_length=2,**{ 'color':'k'})
    

    ax.set_xlim(misc.adjust_limit([0,100]))
    ax.set_ylim(misc.adjust_limit([0,110]))
    
    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0,100]) 
    
    for label, coord, color in zip(labels,coords,colors):
        ax.text( coord[0], coord[1], label, transform=ax.transAxes, 
                 fontsize=pylab.rcParams['text.fontsize'], 
                 **{'color': color})
Exemplo n.º 25
0
def plot_selection_vs_neurons_indirect2(ax, MSNmeanRates, SNRmeanRates):
    colors = ['b', 'g', 'r']
    labels = [r'First 100 ms', r'250-350 ms', r'Last 100 ms']
    coords = [[0.4, 0.42], [0.02, 0.001], [0.15, 0.78]]

    for i, color in enumerate(colors):
        ax.plot(MSNmeanRates, SNRmeanRates[i, :], **{
            'color': color,
            'marker': '.',
            'linestyle': '--'
        })
        #x,y,dy=fit_pol(MSNmeanRates,SNRmeanRates[i,:])
        #ax.plot(x,y,**{'color':color})

    ax.plot([0, 2.5], [SELECTION_THR] * len([0, 2]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.8,
            0.20,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Firing rate $MSN_{D2}$ (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    ax.set_xlim(misc.adjust_limit([17, 50]))
    ax.set_ylim(misc.adjust_limit([34, 110]))

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 50])

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=12,
                **{'color': color})
Exemplo n.º 26
0
def plot_SNr_rate_std_vs_syn_event_x3_late(ax, hzs):

    colors = misc.make_N_colors('YlOrBr', 5)[2:]

    labels = ['%i Hz' % hzs[0], '%i Hz' % hzs[1], '%i Hz' % hzs[2]]
    coords = [[0.4, 0.52], [0.05, 0.22], [0.1, 0.74]]

    i_inverval = 1  # 0-100 ms
    i_syn = 2  # Plastic

    for hz, col in zip(hzs, colors):

        nb, rate_data, r_std_data, n_max_sel, s = simulate_selection_vs_neurons(
            SEL_INTERVALS, msn_burst_rate=hz, load=True)
        syn_events = nb * hz + (N_MSN - nb) * 0.1
        ax.plot(
            syn_events,
            rate_data[i_inverval][i_syn, :] / r_std_data[i_inverval][i_syn, :],
            **{'color': col})

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=font_size_text,
                **{'color': color})

    ax.set_ylabel('Signal to noise ratio')
    ax.set_xlabel('Input SNr (events/s)')

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, LIM_SYN_EVENTS])

    ax.my_set_no_ticks(yticks=6, xticks=5)
    ax.set_xlim(misc.adjust_limit([50, LIM_SYN_EVENTS]))
    ax.set_ylim(misc.adjust_limit([0, 4]))
    ax.text(0.1,
            0.85,
            'Last 100 ms of the burst',
            transform=ax.transAxes,
            fontsize=font_size_text,
            **{'color': 'k'})
Exemplo n.º 27
0
def plot_MSN_vs_SNR_const_syn_events(ax, nMSN_range, SNRmeanRates):

    colors = ['b', 'g', 'm']
    labels = [
        r'$\delta_{weak}^{MSN}$', r'$\delta_{strong}^{MSN}$',
        r'$\delta_{fac}^{MSN}$'
    ]
    coords = [[0.1, 0.68], [0.05, 0.12], [0.35, 0.45]]

    for i, color in enumerate(colors):
        ax.plot(nMSN_range, SNRmeanRates[i, :], **{'color': color})

    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.set_xlabel('Bursting MSN (#)')
    ax.my_set_no_ticks(yticks=7, xticks=6)

    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, N_MAX_BURSTING])

    ax.plot([0, N_MAX_BURSTING], [SELECTION_THR] * len([0, 2]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })

    ax.text(0.1,
            0.33,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})

    ax.set_xlim(misc.adjust_limit([0, N_MAX_BURSTING]))
    ax.set_ylim(misc.adjust_limit([0, 18]))
def plot_signal_rates(ax, hzs, rates):

    colors = ['b', 'm']
    labels = [r'$\delta_{weak}^{MSN}$', r'$\delta_{fac}^{MSN}$']
    coords = [[0.53, 0.49], [0.05, 0.21]]

    syn = DP['SYNAPSE_MODELS_TESTED']

    for id, label, color in zip([0, 2], labels, colors):
        ax.plot(hzs, rates[:, id], **{'color': color})

    ax.set_xlabel('Firing rate MSN burst (spikes/s)')
    ax.set_ylabel('Firing rate SNr (spikes/s)')
    ax.my_set_no_ticks(yticks=8, xticks=6)

    for label, coord, color in zip(labels, coords, colors):
        ax.text(coord[0],
                coord[1],
                label,
                transform=ax.transAxes,
                fontsize=pylab.rcParams['text.fontsize'],
                **{'color': color})
    ax.set_yticks(hzs, hzs)

    ax.plot([min(hzs), max(hzs)], [DP['LOWER_THR']] * len([0, max(hzs)]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    #ax.text( 0.8, 0.11,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})
    '''
    ax.semilogx([min(hzs), max(hzs)],[DP['UPPER_THR']]*len([0, max(hzs)]),**{'color':[0.6,0.6,0.6],
                                                        'label':'', 'linewidth':1,
                                                        'linestyle':'--'})
    #ax.text( 0.8, 0.11,'Thr' , transform=ax.transAxes, **{ 'color' : [0.6,0.6,0.6]})   
    '''
    lines = ax.lines
    for line in lines:
        misc.slice_line(line, xlim=[0, 48])

    ax.set_xlim(misc.adjust_limit([0, 48]))
    ax.set_ylim(misc.adjust_limit([0, 30]))
Exemplo n.º 29
0
def plot_example_snr(ax, SNR):
    time_bin = 20
    signal = SNR[0].signals['spikes']
    colors = ['k']

    sim_time = 2500

    signal.my_firing_rate(bin=time_bin,
                          display=ax,
                          kwargs={'color': colors[0]})

    ax.my_set_no_ticks(yticks=6, xticks=7)
    lines = ax.lines
    for line in lines:
        line.set_xdata(line.get_xdata() - ADJUST_XDATA_MS)

    ax.plot([0, sim_time], [SELECTION_THR] * len([0, sim_time]), **{
        'color': [0.6, 0.6, 0.6],
        'label': '',
        'linewidth': 1,
        'linestyle': '--'
    })
    ax.text(0.9,
            0.14,
            'Thr',
            transform=ax.transAxes,
            **{'color': [0.6, 0.6, 0.6]})
    misc.slice_line(lines[0], xlim=[0, sim_time])

    ax.plot([1000, 1500], [39, 39], color='k', marker='|')
    ax.text(0.47, 0.84, 'stop', transform=ax.transAxes, **{'color': 'k'})

    ax.plot([500, 700], [30, 30], color='k', marker='|')
    ax.text(0.23, 0.67, '1st', transform=ax.transAxes, **{'color': 'k'})

    ax.plot([1500, 1700], [30, 30], color='k', marker='|')
    ax.text(0.60, 0.67, '2nd', transform=ax.transAxes, **{'color': 'k'})

    ax.set_xlim(misc.adjust_limit([0, sim_time]))
    ax.set_ylim(misc.adjust_limit([0, 45]))

    ax.set_ylabel('Firing rate SNr (spikes/s)')
Exemplo n.º 30
0
def plot_example_firing_frequency_GPE(ax, GPE_list):
    global ADJUST_XDATA_MS
    global N_GPE
    global N_SEL
    time_bin = 20

    GPE_a = GPE_list[0]
    GPE_s = GPE_a.slice(GPE_a.ids[N_GPE - N_SEL:])
    GPE_b = GPE_a.slice(GPE_a.ids[0:N_GPE - N_SEL])

    for g in GPE_list[1:]:
        GPE_a.merge(g)
        GPE_s.merge(g.slice(g.ids[N_GPE - N_SEL:]))
        GPE_b.merge(g.slice(g.ids[0:N_GPE - N_SEL]))

    GPE_a.signals['spikes'].my_firing_rate(bin=time_bin,
                                           display=ax,
                                           kwargs={'color': 'k'})
    GPE_s.signals['spikes'].my_firing_rate(bin=time_bin,
                                           display=ax,
                                           kwargs={'color': 'r'})
    GPE_b.signals['spikes'].my_firing_rate(bin=time_bin,
                                           display=ax,
                                           kwargs={'color': 'b'})

    ax.set_xlim(misc.adjust_limit([0, 1500]))
    ax.set_ylim(misc.adjust_limit([0, 50]))

    lines = ax.lines

    for line in lines:
        line.set_xdata(line.get_xdata() - ADJUST_XDATA_MS)

    misc.slice_line(lines[0], xlim=[0, 1490])
    misc.slice_line(lines[1], xlim=[0, 1490])
    misc.slice_line(lines[2], xlim=[0, 1490])

    #ax.set_title('bin=%i'%(time_bin),**{'fontsize':12})
    ax.set_ylabel('Firing rate GPe (spikes/s)')
    ax.my_set_no_ticks(yticks=6, xticks=5)

    ax.text(0.05,
            0.75,
            'Non-pausing GPe neurons',
            backgroundcolor='w',
            transform=ax.transAxes,
            **{'color': 'b'})
    ax.text(0.05,
            0.85,
            'Pausing GPe neurons',
            backgroundcolor='w',
            transform=ax.transAxes,
            **{'color': 'r'})
    ax.text(0.05,
            0.65,
            'Average over all',
            backgroundcolor='w',
            transform=ax.transAxes,
            **{'color': 'k'})