Exemplo n.º 1
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, seed, mode="train"):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
            mode (str): if eval, the agent will not learn and collect experiences
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size,
                                       seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size,
                                        seed).to(device)
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = PrioritizedBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                        seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
        # Caches the expected action value of the last act
        self.last_action_value = None

        self.set_mode(mode)

    def step(self, state, action, reward, next_state, done):

        if self.mode == "train":

            error = self.calculate_error_eval(state, action, reward,
                                              next_state, done)

            # Save experience in replay memory
            self.memory.add(state, action, reward, next_state, done, error)

            # Learn every UPDATE_EVERY time steps.
            self.t_step = (self.t_step + 1) % UPDATE_EVERY
            if self.t_step == 0:
                # If enough samples are available in memory, get random subset and learn
                if len(self.memory) > BATCH_SIZE:
                    experiences = self.memory.sample()
                    self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        if self.mode == "eval":
            eps = 0

        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            action = np.argmax(action_values.cpu().data.numpy())
        else:
            action = random.choice(np.arange(self.action_size))

        self.last_action_value = action_values[0][action].item()

        return action

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Variable]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        ## TODO: compute and minimize the loss
        with torch.no_grad():
            local_max = self.qnetwork_local(next_states).detach().argmax(
                1).unsqueeze(1)
            targets = self.qnetwork_target(next_states).detach().gather(
                1, local_max)
            target_values = rewards + gamma * targets * (1 - dones)

        predicted_values = self.qnetwork_local(states).gather(1, actions)

        criterion = torch.nn.MSELoss()
        loss = criterion(predicted_values, target_values)

        self.optimizer.zero_grad()
        loss.backward()

        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)

        self.memory.update_errors((target_values - predicted_values).squeeze())

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def calculate_error_eval(self, state, action, reward, next_state, done):
        """Calculates the error for a given step."""
        self.qnetwork_target.eval()

        next_state = torch.from_numpy(next_state).float().unsqueeze(0).to(
            device)

        with torch.no_grad():
            target = self.qnetwork_target(next_state).max()

            target_value = reward + GAMMA * target * (1 - done)
            error = (target_value - self.last_action_value).item()

        self.qnetwork_target.train()

        return error

    def save(self, path=""):
        torch.save(self.qnetwork_local.state_dict(),
                   path + "checkpoint_local.pth")
        torch.save(self.qnetwork_target.state_dict(),
                   path + "checkpoint_target.pth")

    def load(self, path=""):
        self.qnetwork_local.load_state_dict(
            torch.load(path + "checkpoint_local.pth"))
        self.qnetwork_target.load_state_dict(
            torch.load(path + "checkpoint_target.pth"))

    def set_mode(self, mode):
        if mode not in {"train", "eval"}:
            raise ValueError("mode must be one of [train, eval]")

        self.mode = mode
Exemplo n.º 2
0
class Agent():
    """Interacts with and learns from the environment."""
    
    def __init__(self, state_size, action_size, seed
                 , local_filename = None, target_filename = None):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(seed)

        # Q-Network
        self.qnetwork_local = QNetwork(state_size, action_size, seed).to(device)
        self.qnetwork_target = QNetwork(state_size, action_size, seed).to(device)
        
        ## if filename is given load them
        if local_filename is not None:
            self.qnetwork_local.load_state_dict(torch.load(local_filename))
        if target_filename is not None:
            self.qnetwork_target.load_state_dict(torch.load(target_filename))
            
        self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=LR)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, seed)
        # Initialize time step (for updating every UPDATE_EVERY steps)
        self.t_step = 0
    
    def step(self, state, action, reward, next_state, done):
        # Save experience in replay memory
        self.memory.add(state, action, reward, next_state, done)
        
        # Learn every UPDATE_EVERY time steps.
        self.t_step = (self.t_step + 1) % UPDATE_EVERY
        if self.t_step == 0:
            # If enough samples are available in memory, get random subset and learn
            if len(self.memory) > BATCH_SIZE:
                experiences = self.memory.sample()
                self.learn(experiences, GAMMA)

    def act(self, state, eps=0.):
        """Returns actions for given state as per current policy.
        
        Params
        ======
            state (array_like): current state
            eps (float): epsilon, for epsilon-greedy action selection
        """
        state = torch.from_numpy(state).float().unsqueeze(0).to(device)
        self.qnetwork_local.eval()
        with torch.no_grad():
            action_values = self.qnetwork_local(state)
        self.qnetwork_local.train()

        # Epsilon-greedy action selection
        if random.random() > eps:
            return np.argmax(action_values.cpu().data.numpy())
        else:
            return random.choice(np.arange(self.action_size))

    def learn(self, experiences, gamma):
        """Update value parameters using given batch of experience tuples.

        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # Get max predicted Q values (for next states) from target model
        Q_targets_next = self.qnetwork_target(next_states).detach().max(1)[0].unsqueeze(1)
        # Compute Q targets for current states 
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))

        # Get expected Q values from local model
        Q_expected = self.qnetwork_local(states).gather(1, actions)

        # Compute loss
        loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.optimizer.zero_grad()
        loss.backward()
        self.optimizer.step()

        # ------------------- update target network ------------------- #
        self.soft_update(self.qnetwork_local, self.qnetwork_target, TAU)                     

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target

        Params
        ======
            local_model (PyTorch model): weights will be copied from
            target_model (PyTorch model): weights will be copied to
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)

    def save(self, local_save_filename, target_save_filename):
        torch.save(self.qnetwork_local.state_dict(),  local_save_filename)
        torch.save(self.qnetwork_target.state_dict(), target_save_filename)