Exemplo n.º 1
0
mnist_test512_cuda = ConfigGrid_WCAE(
    learning_rate=[1/100],
    batch_size=[512],
    n_epochs=[1],
    weight_decay=[1e-6],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[1,2],
    match_edges=['push_active'],
    k=[1],
    r_max=[10],
    model_class=[ConvAE_MNIST_SMALL],
    model_kwargs=[dict()],
    dataset=[MNIST_offline()],
    sampling_kwargs=[dict(root_path = '/content/gdrive/My Drive/MT_projectfolder/MT/AEs-VAEs-TDA')],
    eval=[ConfigEval(
        active=False,
        evaluate_on='test',
        eval_manifold=False,
        save_eval_latent=True,
        save_train_latent=True,
        online_visualization=False,
        k_min=5,
        k_max=45,
        k_step=5,
    )],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(n_jobs=[1], normalize=[True], mu_push=[1], online_wc=[True], wc_offline = [dict(path_to_data = '/content/gdrive/My Drive/MT_projectfolder/MT/AEs-VAEs-TDA/src/datasets/WitnessComplexes/mnist/MNIST_offline-bs512-seed838-noiseNone-ced06774')]),
    experiment_dir='/output/WAE/mnist_precomputed_2',
    seed=838,
    device='cuda',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 2
0
 unity_test = ConfigGrid_WCAE(
     learning_rate=[1 / 100],
     batch_size=[120],
     n_epochs=[200],
     weight_decay=[1e-6],
     early_stopping=[20],
     rec_loss_weight=[1],
     top_loss_weight=[512, 1024],
     match_edges=['push_active'],
     k=[1],
     r_max=[10],
     model_class=[ConvAElarge_Unity],
     model_kwargs=[dict()],
     dataset=[Unity_Rotblock()],
     sampling_kwargs=[dict()],
     eval=[
         ConfigEval(active=True,
                    evaluate_on='test',
                    eval_manifold=False,
                    save_eval_latent=True,
                    save_train_latent=True,
                    online_visualization=False,
                    k_min=5,
                    k_max=10,
                    k_step=5,
                    quant_eval=False)
     ],
     uid=[''],
     toposig_kwargs=[dict()],
     method_args=dict(
         n_jobs=[1],
         normalize=[True],
         mu_push=[1],
         online_wc=[True],
         dist_x_land=[True],
         wc_offline=[
             dict(
                 path_to_data=
                 '/Users/simons/PycharmProjects/MT-VAEs-TDA/src/datasets/simulated/block_rotation_1'
             )
         ]),
     experiment_dir=
     '/Users/simons/PycharmProjects/MT-VAEs-TDA/output/WAE/testing_unity',
     seed=1,
     device='cpu',
     num_threads=4,
     verbose=True,
 )
Exemplo n.º 3
0
mnist_s838_1024_lw = ConfigGrid_WCAE(
    learning_rate=[1 / 10, 1 / 100, 1 / 1000],
    batch_size=[1024],
    n_epochs=[1000],
    weight_decay=[1e-6],
    early_stopping=[30],
    rec_loss_weight=[1],
    top_loss_weight=[i for i in np.logspace(-2, -1, num=2, base=2.0)],
    match_edges=['push_active'],
    k=[1, 2, 3, 4, 5, 6],
    r_max=[10],
    model_class=[ConvAE_MNIST],
    model_kwargs=[dict()],
    dataset=[MNIST_offline()],
    sampling_kwargs=[dict(root_path='/cluster/home/schsimo/MT/AEs-VAEs-TDA')],
    eval=[
        ConfigEval(
            active=False,
            evaluate_on='test',
            eval_manifold=False,
            save_eval_latent=True,
            save_train_latent=False,
            online_visualization=False,
            k_min=5,
            k_max=45,
            k_step=5,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(n_jobs=[1],
                     normalize=[True],
                     mu_push=[1, 1.125],
                     online_wc=[True],
                     wc_offline=[dict(path_to_data=wcpath_mnist_s838_1024)]),
    experiment_dir='/cluster/scratch/schsimo/output/mnist1024_2',
    seed=838,
    device='cuda',
    num_threads=2,
    verbose=False,
)
Exemplo n.º 4
0
swissroll_visualize128 = ConfigGrid_WCAE(
    learning_rate=[1 / 100],
    batch_size=[128],
    n_epochs=[1000],
    weight_decay=[0],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[8192],
    match_edges=['push_active'],
    k=[3],
    r_max=[10],
    model_class=[Autoencoder_MLP_topoae],
    model_kwargs={
        'input_dim': [3],
        'latent_dim': [2],
        'size_hidden_layers': [[32, 32]]
    },
    dataset=[SwissRoll()],
    sampling_kwargs={
        'n_samples': [2560]  #2560
    },
    eval=[
        ConfigEval(
            active=False,
            evaluate_on='test',
            eval_manifold=False,
            save_eval_latent=True,
            save_train_latent=True,
            online_visualization=True,
            quant_eval=False,
            k_min=5,
            k_max=45,
            k_step=5,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1.25],
        online_wc=[True],
        wc_offline=[
            dict(
                path_to_data=
                '/Users/simons/MT_data/sync/euler_sync/schsimo/MT/output/WitnessComplexes/SwissRoll/nonoise/SwissRoll-bs128-seed5310-d39df50c'
            )
        ]),
    experiment_dir=
    '/Users/simons/PycharmProjects/MT-VAEs-TDA/output/WAE/online_visualize2',
    seed=5310,
    device='cpu',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 5
0
rotopenai_1_local = ConfigGrid_WCAE(
    learning_rate=[1 / 100],
    batch_size=[180],
    n_epochs=[1000],
    weight_decay=[0],
    early_stopping=[120],
    rec_loss_weight=[1],
    top_loss_weight=[1],
    match_edges=['push_active'],
    k=[2],
    r_max=[10],
    model_class=[ConvAE_Unity480320],
    model_kwargs=[dict()],
    dataset=[Unity_RotOpenAI()],
    sampling_kwargs=[dict()],
    eval=[
        ConfigEval(active=True,
                   evaluate_on='test',
                   eval_manifold=False,
                   save_eval_latent=False,
                   save_train_latent=True,
                   online_visualization=False,
                   k_min=5,
                   k_max=10,
                   k_step=5,
                   quant_eval=False)
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1.125],
        online_wc=[True],
        dist_x_land=[True],
        lam_t_decay=[
            dict([(i * 100, 1 / 2**ii)
                  for i, ii in enumerate([-2, -1, 0, 1, 2, 4, 8, 10, 12])])
        ],
        wc_offline=[
            dict(path_to_data='/src/datasets/simulated/openai_rotating')
        ],
        pre_trained_model=[
            '/Users/simons/PycharmProjects/MT-VAEs-TDA/output/WAE/openai/retrain_examples/1_/post/Unity_RotOpenAI-seed1-ConvAE_Unity480320-default-lr1_100-bs180-nep1000-rlw1-tlw1-mepush_active9_8-k3-rmax10-seed1-a31416d4'
        ]),
    experiment_dir='/output/WAE/openai/retrain_examples/1_',
    seed=1,
    device='cpu',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 6
0
 ConfigGrid_WCAE(
     learning_rate=[1 / 10, 1 / 100, 1 / 1000],
     batch_size=[int(bs)],
     n_epochs=[1000],
     weight_decay=[1e-6],
     early_stopping=[50],
     rec_loss_weight=[1],
     top_loss_weight=[int(i) for i in np.logspace(9, 13, num=5, base=2.0)],
     match_edges=['push_active'],
     k=[1, 2, 3, 4, 5, 6],
     r_max=[10],
     model_class=[Autoencoder_MLP_topoae],
     model_kwargs={
         'input_dim': [3],
         'latent_dim': [2],
         'size_hidden_layers': [[32, 32]]
     },
     dataset=[SwissRoll()],
     sampling_kwargs={'n_samples': [2560]},
     eval=[
         ConfigEval(
             active=True,
             evaluate_on='test',
             eval_manifold=True,
             save_eval_latent=True,
             save_train_latent=True,
             online_visualization=False,
             k_min=15,
             k_max=45,
             k_step=15,
         )
     ],
     uid=[''],
     toposig_kwargs=[dict()],
     method_args=dict(n_jobs=[1],
                      normalize=[True],
                      mu_push=[1, 1.05, 1.1, 1.15, 1.2, 1.25],
                      online_wc=[True],
                      wc_offline=[dict_wc]),
     experiment_dir=
     '/cluster/scratch/schsimo/output/WCAE_swissroll_nonoise_FINAL',
     seed=int(seed),
     device='cpu',
     num_threads=1,
     verbose=False,
 )
Exemplo n.º 7
0
 ConfigGrid_WCAE(
     learning_rate=[lr],
     batch_size=random.sample(
         [int(i) for i in np.logspace(6, 9, num=4, base=2.0)], 4),
     n_epochs=[1000],
     weight_decay=[1e-6],
     early_stopping=[32],
     rec_loss_weight=[1],
     top_loss_weight=[int(i) for i in np.logspace(9, 13, num=5, base=2.0)],
     match_edges=['symmetric'],
     k=[1, 2, 4, 8, 16],
     r_max=[10],
     model_class=[Autoencoder_MLP_topoae],
     model_kwargs={
         'input_dim': [3],
         'latent_dim': [2],
         'size_hidden_layers': [[32, 32]]
     },
     dataset=[SwissRoll()],
     sampling_kwargs={'n_samples': [2560]},
     eval=[
         ConfigEval(
             active=True,
             evaluate_on='test',
             save_eval_latent=True,
             save_train_latent=True,
             online_visualization=False,
             k_min=5,
             k_max=20,
             k_step=5,
         )
     ],
     uid=[''],
     toposig_kwargs=[dict()],
     method_args=[dict(n_jobs=1, normalize=True)],
     experiment_dir=
     '/cluster/scratch/schsimo/output/WCTopoAE_swissroll_symmetric',
     seed=seed,
     device='cpu',
     num_threads=1,
     verbose=False,
 ) for lr, seed in zip(list(np.repeat([1 / 10, 1 / 100, 1 / 1000], 5)),
Exemplo n.º 8
0
 ConfigGrid_WCAE(
     learning_rate=[1 / 1000],
     batch_size=[int(i) for i in np.logspace(3, 11, num=10, base=2.0)],
     n_epochs=[1000],
     weight_decay=[0],
     early_stopping=[10],
     rec_loss_weight=[1],
     top_loss_weight=[j],
     match_edges=['symmetric'],
     k=[1],
     r_max=[10],
     model_class=[Autoencoder_MLP_topoae],
     model_kwargs={
         'input_dim': [101],
         'latent_dim': [2],
         'size_hidden_layers': [[32, 32]]
     },
     dataset=[Spheres()],
     sampling_kwargs={'n_samples': [512]},
     eval=[
         ConfigEval(
             active=True,
             evaluate_on='test',
             save_eval_latent=True,
             save_train_latent=True,
             online_visualization=False,
             k_min=5,
             k_max=80,
             k_step=25,
         )
     ],
     uid=[''],
     toposig_kwargs=[dict()],
     method_args=[dict()],
     experiment_dir=
     '/cluster/home/schsimo/MT/output/WCTopoAE/Spheres/testing',
     seed=1,
     device='cpu',
     num_threads=1,
     verbose=False,
 ) for j in [int(i) for i in np.logspace(0, 10, base=2, num=4)]
Exemplo n.º 9
0
rotopenai_cluster = ConfigGrid_WCAE(
    learning_rate=[1 / 10, 1 / 1000, 1 / 100],
    batch_size=[180],
    n_epochs=[1000],
    weight_decay=[1e-6],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[1],
    match_edges=['push_active'],
    k=[1, 2, 3, 4, 5],
    r_max=[10],
    model_class=[ConvAE_Unity480320],
    model_kwargs=[dict()],
    dataset=[Unity_RotOpenAI()],
    sampling_kwargs=[dict(root_path='/cluster/home/schsimo/MT/AEs-VAEs-TDA')],
    eval=[
        ConfigEval(active=True,
                   evaluate_on='test',
                   eval_manifold=False,
                   save_eval_latent=False,
                   save_train_latent=True,
                   online_visualization=False,
                   k_min=5,
                   k_max=10,
                   k_step=5,
                   quant_eval=False)
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1, 1.125, 1.25],
        online_wc=[True],
        dist_x_land=[True],
        wc_offline=[
            dict(
                path_to_data=
                '/cluster/home/schsimo/MT/AEs-VAEs-TDA/src/datasets/simulated/openai_rotating'
            )
        ]),
    experiment_dir='/cluster/scratch/schsimo/output/openai_rot',
    seed=1,
    device='cpu',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 10
0
 corgi_1 = ConfigGrid_WCAE(
     learning_rate=[1/10,1/100],
     batch_size=[60],
     n_epochs=[500],
     weight_decay=[1e-6],
     early_stopping=[30],
     rec_loss_weight=[1],
     top_loss_weight=[64,128],
     match_edges=['push_active'],
     k=[2],
     r_max=[10],
     model_class=[ConvAE_Unity480320],
     model_kwargs=[dict()],
     dataset=[Unity_RotCorgi()],
     sampling_kwargs=[dict()],
     eval=[ConfigEval(
         active=True,
         evaluate_on='test',
         eval_manifold=False,
         save_eval_latent=True,
         save_train_latent=True,
         online_visualization=False,
         k_min=5,
         k_max=10,
         k_step=5,
         quant_eval = False
     )],
     uid=[''],
     toposig_kwargs=[dict()],
     method_args=dict(n_jobs=[1], normalize=[True], mu_push=[1], online_wc=[True], dist_x_land = [True],
                      wc_offline=[dict(path_to_data='/Users/simons/PycharmProjects/MT-VAEs-TDA/src/datasets/simulated/corgi_rotation_1')]),
     experiment_dir='/Users/simons/PycharmProjects/MT-VAEs-TDA/output/WAE/corgi/rotating',
     seed=1,
     device='cpu',
     num_threads=4,
     verbose=True,
 )
Exemplo n.º 11
0
rotopenai_test = ConfigGrid_WCAE(
    learning_rate=[1 / 100],
    batch_size=[180],
    n_epochs=[1000],
    weight_decay=[1e-6],
    early_stopping=[30],
    rec_loss_weight=[1],
    top_loss_weight=[1 / 8, 1 / 4, 1 / 2, 1, 0],
    match_edges=['push_active'],
    k=[1],
    r_max=[10],
    model_class=[ConvAE_Unity480320],
    model_kwargs=[dict()],
    dataset=[Unity_RotOpenAI()],
    sampling_kwargs=[dict()],
    eval=[
        ConfigEval(active=True,
                   evaluate_on='test',
                   eval_manifold=False,
                   save_eval_latent=True,
                   save_train_latent=True,
                   online_visualization=False,
                   k_min=5,
                   k_max=10,
                   k_step=5,
                   quant_eval=False)
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1],
        online_wc=[True],
        dist_x_land=[True],
        wc_offline=[
            dict(path_to_data='/src/datasets/simulated/openai_rotating')
        ]),
    experiment_dir='/output/WAE/openai/rotating',
    seed=1,
    device='cpu',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 12
0
corgi_30_decay = ConfigGrid_WCAE(
    learning_rate=[1 / 100, 1 / 1000],
    batch_size=[30],
    n_epochs=[5000],
    weight_decay=[1e-6, 1e-8, 0],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[1024],
    match_edges=['push_active'],
    k=[2],
    r_max=[10],
    model_class=[ConvAE_Unity480320],
    model_kwargs=[dict()],
    dataset=[Unity_RotCorgi()],
    sampling_kwargs=[
        dict(root_path='/cluster/home/schsimo/MT/AEs-VAEs-TDA',
             version=5,
             landmarks=True)
    ],
    eval=[
        ConfigEval(active=True,
                   evaluate_on='test',
                   eval_manifold=False,
                   save_eval_latent=True,
                   save_train_latent=True,
                   online_visualization=False,
                   k_min=5,
                   k_max=10,
                   k_step=5,
                   quant_eval=False)
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1],
        online_wc=[True],
        dist_x_land=[True],
        lam_t_decay=[{
            0: 1024,
            25: 512,
            50: 256,
            75: 128,
            100: 64,
            125: 32,
            150: 16,
            150: 8,
            500: 4,
            1000: 2
        }],
        wc_offline=[
            dict(
                path_to_data=
                '/cluster/home/schsimo/MT/AEs-VAEs-TDA/src/datasets/simulated/corgi_rotation_5_l'
            )
        ]),
    experiment_dir='/cluster/scratch/schsimo/output/corgi/corgi_30_std',
    seed=1,
    device='cpu',
    num_threads=2,
    verbose=False,
)
Exemplo n.º 13
0
mnist_s838_64_fullk_fullnu = ConfigGrid_WCAE(
    learning_rate=[1 / 10, 1 / 100, 1 / 1000],
    batch_size=[64],
    n_epochs=[1000],
    weight_decay=[1e-6],
    early_stopping=[30],
    rec_loss_weight=[1],
    top_loss_weight=[int(i) for i in np.logspace(0, 4, num=5, base=2.0)],
    match_edges=['push_active'],
    k=[1, 2, 3, 4, 5, 6],
    r_max=[10],
    model_class=[ConvAE_MNIST],
    model_kwargs=[dict()],
    dataset=[MNIST_offline()],
    sampling_kwargs=[dict(root_path='/cluster/home/schsimo/MT/AEs-VAEs-TDA')],
    eval=[
        ConfigEval(
            active=False,
            evaluate_on='test',
            eval_manifold=False,
            save_eval_latent=True,
            save_train_latent=False,
            online_visualization=False,
            k_min=5,
            k_max=45,
            k_step=5,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(n_jobs=[1],
                     normalize=[True],
                     mu_push=[1, 1.125, 1.25, 1.375],
                     online_wc=[True],
                     wc_offline=[dict(path_to_data=wcpath_mnist_s838_64)]),
    experiment_dir='/cluster/scratch/schsimo/output/mnist64',
    seed=838,
    device='cpu',
    num_threads=1,
    verbose=False)
Exemplo n.º 14
0
mnist_test_3d = ConfigGrid_WCAE(
    learning_rate=[1 / 100],
    batch_size=[1024],
    n_epochs=[3],
    weight_decay=[1e-6],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[1],
    match_edges=['push_active'],
    k=[1],
    r_max=[10],
    model_class=[ConvAE_MNIST_3D],
    model_kwargs=[dict()],
    dataset=[MNIST_offline()],
    sampling_kwargs=[dict()],
    eval=[
        ConfigEval(
            active=False,
            evaluate_on='test',
            eval_manifold=False,
            save_eval_latent=False,
            save_train_latent=True,
            online_visualization=False,
            k_min=4,
            k_max=5,
            k_step=1,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1.05],
        online_wc=[True],
        wc_offline=[
            dict(
                path_to_data=
                '/Users/simons/MT_data/sync/euler_sync/schsimo/MT/output/WitnessComplexes/mnist/MNIST_offline-bs1024-seed838-noiseNone-6f31dea2'
            )
        ]),
    experiment_dir=
    '/Users/simons/PycharmProjects/MT-VAEs-TDA/scripts/ssc/output',
    seed=838,
    device='cpu',
    num_threads=1,
    verbose=False,
)
Exemplo n.º 15
0
WCAE_sample_config = ConfigGrid_WCAE(
    learning_rate=[1 / 1000],
    batch_size=[64],
    n_epochs=[5],
    weight_decay=[0],
    early_stopping=[35],
    rec_loss_weight=[1],
    top_loss_weight=[1024],
    match_edges=['push_active'],
    k=[1],
    r_max=[10],
    model_class=[Autoencoder_MLP_topoae],
    model_kwargs={
        'input_dim': [3],
        'latent_dim': [2],
        'size_hidden_layers': [[32, 32]]
    },
    dataset=[SwissRoll()],
    sampling_kwargs={
        'n_samples': [2560]  #2560
    },
    eval=[
        ConfigEval(
            active=True,
            evaluate_on='test',
            save_eval_latent=True,
            save_train_latent=True,
            online_visualization=False,
            k_min=5,
            k_max=80,
            k_step=25,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=[dict(n_jobs=1, normalize=True)],
    experiment_dir='output/sample',
    seed=1,
    device='cpu',
    num_threads=1,
    verbose=True,
)
Exemplo n.º 16
0
mnist_test = ConfigGrid_WCAE(
    learning_rate=[1 / 100],
    batch_size=[1024],
    n_epochs=[3],
    weight_decay=[1e-6],
    early_stopping=[50],
    rec_loss_weight=[1],
    top_loss_weight=[1],
    match_edges=['push_active'],
    k=[1],
    r_max=[10],
    model_class=[ConvAE_MNIST],
    model_kwargs=[dict()],
    dataset=[MNIST_offline()],
    sampling_kwargs=[dict()],
    eval=[
        ConfigEval(
            active=False,
            evaluate_on='test',
            eval_manifold=False,
            save_eval_latent=True,
            save_train_latent=True,
            online_visualization=False,
            k_min=4,
            k_max=5,
            k_step=1,
        )
    ],
    uid=[''],
    toposig_kwargs=[dict()],
    method_args=dict(
        n_jobs=[1],
        normalize=[True],
        mu_push=[1.05],
        online_wc=[True],
        wc_offline=[
            dict(
                path_to_data=
                '/Users/simons/MT_data/sync/euler_sync/schsimo/MT/output/WitnessComplexes/mnist/MNIST_offline-bs1024-seed838-noiseNone-6f31dea2'
            )
        ]),
    experiment_dir='/output/WAE/mnist_precomputed',
    seed=838,
    device='cpu',
    num_threads=1,
    verbose=True,
)