Exemplo n.º 1
0
 def test_knn_predict(self):
     """
     Testing the predicted values of the knnRegressor
     """
     y_predict = [2, 2, 3, 3]
     my_knn = knnRegressor("y~.", data=df1)
     my_knn.fit()
     self.assertEqual(y_predict, my_knn.predict(df1).tolist())
Exemplo n.º 2
0
 def test_knn_predict_with_k_value(self):
     """
     Testing the predicted values of the knnRegressor with 2 nearest neighbors
     """
     y_expected = [1, 1, 4.5, 4.5]
     my_knn = knnRegressor("y~.", k=2, data=df1)
     my_knn.fit()
     y_predicted = my_knn.predict(df1)
     self.assertEqual(y_expected, y_predicted.tolist())
Exemplo n.º 3
0
 def test_knn_predict(self):
     """
     Testing the predicted values of the knnClassifier
     """
     y_predict = [
         0.3333333333333333, 0.3333333333333333, 0.3333333333333333,
         0.3333333333333333
     ]
     my_knn = knnRegressor("y~.", data=df_cl)
     my_knn.fit()
     self.assertEqual(y_predict, my_knn.predict(df1).tolist())
Exemplo n.º 4
0
 def test_knn_fit(self):
     """
     Testing the fit method of the knnClassifier and making sure it is not raising error
     """
     my_knn = knnRegressor("y~.", data=df_cl)
     my_knn.fit()
Exemplo n.º 5
0
 def test_knn_init(self):
     """
     Making sure if you are able to create instance of the knnRegressor.
     """
     my_model = knnRegressor("y~.", df1)
Exemplo n.º 6
0
from src.models.BaseModel import BaseModel

if __name__ == "__main__":
    model_formula = FormulaParser('dist~speed', ["speed", "dist"])

    df = pd.DataFrame({"x": [0, 0, 1, 1], "y": [0, 2, 4, 5]})
    print('Data to fit the model: \n', df)
    my_lm = lm("y~.", data=df)
    my_lm.fit()
    my_lm.summary()
    #
    df1 = pd.DataFrame({"x": [0, 0, 1, 1], "y": [0, 2, 4, 5]})
    predict_df = pd.DataFrame({"x": [0, 1]})
    my_lm = lm("y~.", data=df1)
    my_lm.fit()
    my_lm.summary()
    y_hat = my_lm.predict(predict_df)
    print(y_hat)

    my_knn = knnRegressor("y~.", data=df1)
    my_knn.fit()
    print(my_knn.predict(df1))

    df2 = pd.DataFrame({"x": [0, 1, 2, 3], "y": [0, 0, 1, 1]})
    my_knn_class = knnClassifier("y~.", data=df2)
    my_knn_class.fit()
    print(my_knn_class.predict_proba(df2))