Exemplo n.º 1
0
def train_inception_opp():
    print("Running Opportunity")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = InceptionModel(num_blocks=1,
                           in_channels=113,
                           out_channels=32,
                           bottleneck_channels=2,
                           kernel_sizes=20,
                           use_residuals=True,
                           num_pred_classes=17)
    model.to(device)
    trainer = OPPTrainer(model=model)
    #trainer.fit()

    wandb.agent(sweep_id, function=trainer.fit, count=15)
Exemplo n.º 2
0
def train_inception_har():
    print("Running HAR")
    data_folder = Path('../data/UCI_HAR_Dataset')
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print(device)
    model = InceptionModel(num_blocks=1,
                           in_channels=9,
                           out_channels=32,
                           bottleneck_channels=2,
                           kernel_sizes=20,
                           use_residuals=True,
                           num_pred_classes=6)
    model.to(device)
    trainer = HARTrainer(model=model, data_folder=data_folder)
    #trainer.fit()

    wandb.agent(sweep_id, function=trainer.fit, count=648)
Exemplo n.º 3
0
def train_inception_wisdm():
    print("Running WISDM")
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    model = InceptionModel(num_blocks=1,
                           in_channels=3,
                           out_channels=32,
                           bottleneck_channels=2,
                           kernel_sizes=20,
                           use_residuals=True,
                           num_pred_classes=6)
    model.to(device)
    trainer = WISDMTrainer(model=model)
    trainer.fit()

    savepath = trainer.save_model()
    #savepath = Path("data/models/InceptionModel/InceptionModel_model_wisdm_20_epochs.pkl")
    new_trainer = load_wisdm_trainer(savepath)
    new_trainer.evaluate()
Exemplo n.º 4
0
    def test_fit_works_for_single_and_multiclass(self, tmp_path,
                                                 num_pred_classes):
        in_channels = 30

        model = InceptionModel(2,
                               in_channels,
                               out_channels=30,
                               bottleneck_channels=12,
                               kernel_sizes=15,
                               use_residuals=True,
                               num_pred_classes=num_pred_classes)

        trainer = TrainerForTests(model,
                                  tmp_path,
                                  in_channels,
                                  num_preds=num_pred_classes)
        # this just ensures everything runs
        trainer.fit(batch_size=50, num_epochs=1)
Exemplo n.º 5
0
def train_inception_sc():

    data_folder = Path('../data')

    model = InceptionModel(num_blocks=1,
                           in_channels=1,
                           out_channels=2,
                           bottleneck_channels=2,
                           kernel_sizes=41,
                           use_residuals=True,
                           num_pred_classes=6)

    trainer = UCRTrainer(model=model,
                         experiment='synthetic_control',
                         data_folder=data_folder)
    trainer.fit()

    savepath = trainer.save_model()
    new_trainer = load_ucr_trainer(savepath)
    new_trainer.evaluate()