Exemplo n.º 1
0
def test_mlp(sizes,
             learning_rate=0.15,
             n_epochs=100,
             batch_size=600,
             L1_reg=1.0e-4,
             L2_reg=0.0e-4):
    n_ex, n_in, n_hidden, n_out = sizes
    datasets = load_data(n_ex, n_in, n_out)

    regmodel = RegressionModel('abc',
                               n_hidden=n_hidden,
                               learning_rate=learning_rate,
                               n_epochs=n_epochs,
                               batch_size=batch_size,
                               L1_reg=L1_reg,
                               L2_reg=L2_reg)
    regmodel.setup_with_data(datasets)
    regmodel.train()

    print(map(lambda d: d.get_value(), regmodel.regression.params))
    print(regmodel.y_pred(), datasets[2][1].get_value())
    """
Exemplo n.º 2
0
def test_mlp(sizes, learning_rate=0.15, n_epochs=100, batch_size=600, L1_reg=1.0e-4, L2_reg=0.0e-4):
    n_ex, n_in, n_hidden, n_out = sizes
    datasets = load_data(n_ex, n_in, n_out)

    regmodel = RegressionModel(
        "abc",
        n_hidden=n_hidden,
        learning_rate=learning_rate,
        n_epochs=n_epochs,
        batch_size=batch_size,
        L1_reg=L1_reg,
        L2_reg=L2_reg,
    )
    regmodel.setup_with_data(datasets)
    regmodel.train()

    print(map(lambda d: d.get_value(), regmodel.regression.params))
    print(regmodel.y_pred(), datasets[2][1].get_value())

    """
Exemplo n.º 3
0
def fit_mlp_models(n_hidden=25,
                   learning_rate=0.15,
                   n_epochs=100,
                   batch_size=600,
                   L1_reg=0.0e-9,
                   L2_reg=0.0e-9):
    exp_type = 'natural'
    movie_type = 'movie'
    spatial_downsample_factor = 4
    n_lag = 13
    saved_models_dir = './temp/mlp-models-%d' % n_hidden
    predicted_responses_dir = './temp/mlp-predicted-responses-%s' % n_hidden
    if not os.path.isdir(saved_models_dir):
        os.makedirs(saved_models_dir)
    else:
        shutil.rmtree(saved_models_dir)
        os.makedirs(saved_models_dir)
    if not os.path.isdir(predicted_responses_dir):
        os.makedirs(predicted_responses_dir)
    else:
        shutil.rmtree(predicted_responses_dir)
        os.makedirs(predicted_responses_dir)

    print '%d hidden layer neurons, %d epochs to train for' % (n_hidden,
                                                               n_epochs)
    responses = load_responses(exp_type)
    movies = load_movies(exp_type,
                         movie_type,
                         downsample_factor=spatial_downsample_factor)
    mlp_training_errors = []

    for i, response in enumerate(responses):
        name = response.name
        print 'Mouse %s' % name

        print 'Splitting out training and test data...'
        tr_rsp, tst_rsp, tr_mov, tst_mov = train_test_split(response,
                                                            movies,
                                                            'even',
                                                            train_frac=0.8)

        print 'Splitting out training and validation data...'
        tr_rsp, val_rsp, tr_mov, val_mov = train_test_split(tr_rsp,
                                                            tr_mov,
                                                            'even',
                                                            train_frac=0.9)

        tr_rsp = smooth_responses(tr_rsp)
        val_rsp = smooth_responses(val_rsp)
        tst_rsp = smooth_responses(tst_rsp)

        train_set_x, train_set_y = window_matrices(tr_rsp, tr_mov, n_lag)
        valid_set_x, valid_set_y = window_matrices(val_rsp, val_mov, n_lag)
        test_set_x, test_set_y = window_matrices(tst_rsp, tst_mov, n_lag)

        model = RegressionModel(model_name=name,
                                n_hidden=n_hidden,
                                learning_rate=learning_rate,
                                n_epochs=n_epochs,
                                batch_size=batch_size,
                                L1_reg=L1_reg,
                                L2_reg=L2_reg)

        model.setup_with_data([(train_set_x, train_set_y),
                               (valid_set_x, valid_set_y),
                               (test_set_x, test_set_y)])
        test_error = model.train()
        mlp_training_errors.append(test_error)

        predicted = model.y_pred()
        np.save(os.path.join(predicted_responses_dir, 'pred_%s' % name),
                predicted)
        with open(os.path.join(saved_models_dir, 'mlp_%s' % name), 'wb') as f:
            pickle.dump(model.regression.params, f)

    with open(os.path.join(saved_models_dir, 'train_errors'), 'wb') as f:
        pickle.dump(mlp_training_errors, f)
def fit_mlp_models(n_hidden=25, learning_rate=0.15, n_epochs=100,
                   batch_size=600, L1_reg=0.0e-9, L2_reg = 0.0e-9):
    exp_type = 'natural'
    movie_type = 'movie'
    spatial_downsample_factor = 4
    n_lag = 13
    saved_models_dir = './temp/mlp-models-%d' % n_hidden
    predicted_responses_dir = './temp/mlp-predicted-responses-%s' % n_hidden
    if not os.path.isdir(saved_models_dir):
        os.makedirs(saved_models_dir)
    else:
        shutil.rmtree(saved_models_dir)
        os.makedirs(saved_models_dir)
    if not os.path.isdir(predicted_responses_dir):
        os.makedirs(predicted_responses_dir)
    else:
        shutil.rmtree(predicted_responses_dir)
        os.makedirs(predicted_responses_dir)

    print '%d hidden layer neurons, %d epochs to train for'%(n_hidden,n_epochs)
    responses = load_responses(exp_type)
    movies = load_movies(exp_type, movie_type,
                         downsample_factor=spatial_downsample_factor)
    mlp_training_errors = []
    
    for i, response in enumerate(responses):
        name = response.name
        print 'Mouse %s' % name

        print 'Splitting out training and test data...'
        tr_rsp, tst_rsp, tr_mov, tst_mov = train_test_split(response, movies,
                                                        'even', train_frac=0.8)

        print 'Splitting out training and validation data...'
        tr_rsp, val_rsp, tr_mov, val_mov = train_test_split(tr_rsp, tr_mov,
                                                        'even', train_frac=0.9)

        tr_rsp = smooth_responses(tr_rsp)
        val_rsp = smooth_responses(val_rsp)
        tst_rsp = smooth_responses(tst_rsp)

        train_set_x, train_set_y = window_matrices(tr_rsp, tr_mov, n_lag)
        valid_set_x, valid_set_y = window_matrices(val_rsp, val_mov, n_lag)
        test_set_x, test_set_y = window_matrices(tst_rsp, tst_mov, n_lag)

        model = RegressionModel(model_name=name, n_hidden=n_hidden,
                                learning_rate=learning_rate,
                                n_epochs=n_epochs, batch_size=batch_size,
                                L1_reg=L1_reg, L2_reg=L2_reg)

        model.setup_with_data([(train_set_x, train_set_y),
                               (valid_set_x, valid_set_y),
                               (test_set_x, test_set_y)])
        test_error = model.train()
        mlp_training_errors.append(test_error)
        
        predicted = model.y_pred()
        np.save(os.path.join(predicted_responses_dir, 'pred_%s' % name),
                predicted)
        with open(os.path.join(saved_models_dir,'mlp_%s' % name), 'wb') as f:
            pickle.dump(model.regression.params, f)

    with open(os.path.join(saved_models_dir, 'train_errors'), 'wb') as f:
        pickle.dump(mlp_training_errors, f)