def main():
    global colours, img_size
    args = parse_args()
    videos_dir = args.videos_dir
    output_path = args.output_path
    no_display = args.no_display
    detect_interval = args.detect_interval  # you need to keep a balance between performance and fluency
    margin = args.margin  # if the face is big in your video ,you can set it bigger for tracking easiler
    scale_rate = args.scale_rate  # if set it smaller will make input frames smaller
    show_rate = args.show_rate  # if set it smaller will dispaly smaller frames
    face_score_threshold = args.face_score_threshold

    mkdir(output_path)
    # for display
    if not no_display:
        colours = np.random.rand(32, 3)

    # init tracker
    tracker = Sort()  # create instance of the SORT tracker

    logger.info('Start track and extract......')
    with tf.Graph().as_default():
        with tf.Session(
                config=tf.ConfigProto(gpu_options=tf.GPUOptions(
                    allow_growth=True),
                                      log_device_placement=False)) as sess:
            pnet, rnet, onet = detect_face.create_mtcnn(
                sess, os.path.join(project_dir, "align"))

            minsize = 40  # minimum size of face for mtcnn to detect
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor

            for filename in os.listdir(videos_dir):
                logger.info('All files:{}'.format(filename))
            for filename in os.listdir(videos_dir):
                suffix = filename.split('.')[1]
                if suffix != 'mp4' and suffix != 'avi':  # you can specify more video formats if you need
                    continue
                video_name = os.path.join(videos_dir, filename)
                directoryname = os.path.join(output_path,
                                             filename.split('.')[0])
                logger.info('Video_name:{}'.format(video_name))
                #cam = cv2.VideoCapture(video_name)
                cam = cv2.VideoCapture(0)
                c = 0
                while True:
                    final_faces = []
                    addtional_attribute_list = []
                    ret, frame = cam.read()
                    if not ret:
                        logger.warning("ret false")
                        break
                    if frame is None:
                        logger.warning("frame drop")
                        break

                    frame = cv2.resize(frame, (0, 0),
                                       fx=scale_rate,
                                       fy=scale_rate)
                    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
                    print('shape of gray')
                    print(gray.shape)
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    if c % detect_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        mtcnn_starttime = time()
                        faces, points = detect_face.detect_face(
                            r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        logger.info(
                            "MTCNN detect face cost time : {} s".format(
                                round(time() - mtcnn_starttime,
                                      3)))  # mtcnn detect ,slow
                        face_sums = faces.shape[0]
                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                score = round(faces[i, 4], 6)
                                if score > face_score_threshold:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(
                                        det[2] + margin, img_size[1])
                                    det[3] = np.minimum(
                                        det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)

                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame, (int(x), int(y)),
                                                       3, (0, 255, 0), -1)
                                    cropped = frame[bb[1]:bb[3],
                                                    bb[0]:bb[2], :].copy()

                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))

                                    # face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
                                    item_list = [
                                        cropped, score, dist_rate,
                                        high_ratio_variance, width_rate
                                    ]
                                    addtional_attribute_list.append(item_list)

                            final_faces = np.array(face_list)
                            emotion = 'Happy'
                    face_detection = cv2.CascadeClassifier(
                        'haarcascade_frontalface_default.xml')
                    emotion_classifier = load_model(
                        'models/_mini_XCEPTION.106-0.65.hdf5', compile=False)
                    EMOTIONS = [
                        "angry", "disgust", "scared", "happy", "sad",
                        "surprised", "neutral"
                    ]

                    frontal_faces = face_detection.detectMultiScale(
                        gray,
                        scaleFactor=1.1,
                        minNeighbors=5,
                        minSize=(30, 30),
                        flags=cv2.CASCADE_SCALE_IMAGE)

                    if len(frontal_faces) > 0:
                        frontal_faces = sorted(frontal_faces,
                                               reverse=True,
                                               key=lambda x: (x[2] - x[0]) *
                                               (x[3] - x[1]))[0]
                        (fX, fY, fW, fH) = frontal_faces
                        roi = gray[fY:fY + fH, fX:fX + fW]
                        roi = cv2.resize(roi, (48, 48))
                        roi = roi.astype("float") / 255.0
                        roi = img_to_array(roi)
                        roi = np.expand_dims(roi, axis=0)
                        np.reshape(roi, (48, 48, 1))
                        print(roi.shape)
                        preds = emotion_classifier.predict(roi)[0]
                        emotion_probability = np.max(preds)
                        label = EMOTIONS[preds.argmax()]

                    trackers = tracker.update(final_faces, img_size,
                                              directoryname,
                                              addtional_attribute_list,
                                              detect_interval)

                    c += 1

                    emoTracker = ''
                    print(trackers)
                    for d in trackers:
                        if not no_display:
                            d = d.astype(np.int32)
                            cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]),
                                          colours[d[4] % 32, :] * 255, 3)

                            if final_faces != []:
                                print('ID %d Detect' % (d[4]))

                                if label != emoTracker:
                                    emoTracker = label
                                cv2.putText(
                                    frame, 'ID : %d  DETECT, EMOTION : %s' %
                                    ((d[4]), emoTracker),
                                    (d[0] - 10, d[1] - 10),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.4,
                                    colours[d[4] % 32, :] * 255, 2)

                            else:
                                cv2.putText(frame, 'ID : %d' % (d[4]),
                                            (d[0] - 10, d[1] - 10),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            colours[d[4] % 32, :] * 255, 2)

                    if not no_display:
                        frame = cv2.resize(frame, (0, 0),
                                           fx=show_rate,
                                           fy=show_rate)
                        cv2.imshow("Frame", frame)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
Exemplo n.º 2
0
Arquivo: test.py Projeto: koddev/men
def detectExtract(a):
    global colours, img_size
    args = parse_args()
    videos_dir = args.videos_dir
    output_path = args.output_path
    no_display = args.no_display
    detect_interval = args.detect_interval  # you need to keep a balance between performance and fluency
    margin = args.margin  # if the face is big in your video ,you can set it bigger for tracking easiler
    scale_rate = args.scale_rate  # if set it smaller will make input frames smaller
    show_rate = args.show_rate  # if set it smaller will dispaly smaller frames
    face_score_threshold = args.face_score_threshold

    mkdir(output_path)
    # for display
    if not no_display:
        colours = np.random.rand(32, 3)

    # init tracker
    tracker = Sort()  # create instance of the SORT tracker

    logger.info('Start track and extract......')
    with tf.Graph().as_default():
        with tf.Session(
                config=tf.ConfigProto(gpu_options=tf.GPUOptions(
                    allow_growth=True),
                                      log_device_placement=True)) as sess:

            pnet, rnet, onet = detect_face.create_mtcnn(
                sess, os.path.join(project_dir, "align"))

            minsize = 80  # minimum size of face for mtcnn to detect
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor

            for filename in os.listdir(videos_dir):
                logger.info('All files:{}'.format(filename))
            for filename in os.listdir(videos_dir):
                suffix = filename.split('.')[1]
                if suffix != 'mp4' and suffix != 'avi':  # you can specify more video formats if you need
                    continue
                video_name = os.path.join(videos_dir, filename)
                directoryname = os.path.join(output_path,
                                             filename.split('.')[0])
                logger.info('Video_name:{}'.format(video_name))
                cam = cv2.VideoCapture(video_name)
                c = 0
                while True:
                    final_faces = []
                    addtional_attribute_list = []
                    ret, frame = cam.read()
                    if not ret:
                        logger.warning("ret false")
                        break
                    if frame is None:
                        logger.warning("frame drop")
                        break

                    # frame = cv2.resize(frame, (0, 0), fx=scale_rate, fy=scale_rate)
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    if c % detect_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        mtcnn_starttime = time()

                        faces, points = detect_face.detect_face(
                            r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        logger.info(
                            "MTCNN detect face cost time : {} s".format(
                                round(time() - mtcnn_starttime,
                                      3)))  # mtcnn detect ,slow
                        face_sums = faces.shape[0]
                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                score = round(faces[i, 4], 6)
                                if score > face_score_threshold:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(
                                        det[2] + margin, img_size[1])
                                    det[3] = np.minimum(
                                        det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)

                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame, (int(x), int(y)),
                                                       3, (0, 255, 0), -1)
                                    cropped = frame[bb[1]:bb[3],
                                                    bb[0]:bb[2], :].copy()

                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))

                                    # face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
                                    item_list = [
                                        cropped, score, dist_rate,
                                        high_ratio_variance, width_rate
                                    ]
                                    addtional_attribute_list.append(item_list)

                            final_faces = np.array(face_list)

                    trackers = tracker.update(final_faces, img_size,
                                              directoryname,
                                              addtional_attribute_list,
                                              detect_interval)

                    c += 1

                    for d in trackers:
                        if not no_display:
                            d = d.astype(np.int32)
                            cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]),
                                          colours[d[4] % 32, :] * 255, 3)
                            if final_faces != []:
                                cv2.putText(frame, 'ID : %d  DETECT' % (d[4]),
                                            (d[0] - 10, d[1] - 10),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            colours[d[4] % 32, :] * 255, 2)
                                cv2.putText(frame, 'DETECTOR', (5, 45),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            (1, 1, 1), 2)
                            else:
                                cv2.putText(frame, 'ID : %d' % (d[4]),
                                            (d[0] - 10, d[1] - 10),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            colours[d[4] % 32, :] * 255, 2)

                    if not no_display:
                        frame = cv2.resize(frame, (0, 0),
                                           fx=show_rate,
                                           fy=show_rate)
                        cv2.imshow("Frame", frame)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
def main():
    global colours, img_size
    args = parse_args()
#    videos_dir = args.videos_dir
    output_path = args.output_path
    no_display = args.no_display
    detect_interval = args.detect_interval  # you need to keep a balance between performance and fluency
    margin = args.margin  # if the face is big in your video ,you can set it bigger for tracking easiler
    scale_rate = args.scale_rate  # if set it smaller will make input frames smaller
    show_rate = args.show_rate  # if set it smaller will dispaly smaller frames
    face_score_threshold = args.face_score_threshold

    mkdir(output_path)
    # for display
    if not no_display:
        colours = np.random.rand(32, 3)

    # init tracker
    tracker = Sort()  # create instance of the SORT tracker

    logger.info('Start track and extract......')
    with tf.Graph().as_default():
        with tf.Session(config=tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True),
                                              log_device_placement=False)) as sess:
            pnet, rnet, onet = detect_face.create_mtcnn(sess, os.path.join(project_dir, "align"))

            minsize = 40  # minimum size of face for mtcnn to detect
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor

#            for filename in os.listdir(videos_dir):
#                logger.info('All files:{}'.format(filename))
#            for filename in os.listdir(videos_dir):
#                suffix = filename.split('.')[1]
#                if suffix != 'mp4' and suffix != 'avi':  # you can specify more video formats if you need
#                    continue
#                video_name = os.path.join(videos_dir, filename)
#                directoryname = os.path.join(output_path, filename.split('.')[0])
            
#                logger.info('Video_name:{}'.format(video_name))
            directoryname=output_path
            cam = cv2.VideoCapture(0) #video_name --> 0 indicating feed from camera
                
            c = 0
            while True:
                    final_faces = []
                    addtional_attribute_list = []
                    ret, frame = cam.read()
                    if not ret:
                        logger.warning("ret false")
                        break
                    if frame is None:
                        logger.warning("frame drop")
                        break

                    frame = cv2.resize(frame, (0, 0), fx=scale_rate, fy=scale_rate)
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    if c % detect_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        mtcnn_starttime = time()
                        faces, points = detect_face.detect_face(r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                                                                factor)
                        logger.info("MTCNN detect face cost time : {} s".format(
                            round(time() - mtcnn_starttime, 3)))  # mtcnn detect ,slow
                        face_sums = faces.shape[0]
                        
#                        if len(face_boxes) > 0:
#                                for i in range(len(face_boxes)):
#                                    box = face_boxes[i]
#                                    cropped_face = frame[box[0]:box[2], box[1]:box[3], :]
#                                    cropped_face = cv2.resize(cropped_face, (160, 160), interpolation=cv2.INTER_AREA)
#                                    feature = face_recognition.recognize(cropped_face)
#                                    (name , proba , conf) = face_classfier.classify(feature)
#                                    
#                                    cv2.rectangle(frame, (box[1], box[0]), (box[3], box[2]), (0, 255, 0), 2)
#                                    name = name+":%"+ proba
#                                    # plot result idx under box
#                                    text_x = box[1]
#                                    text_y = box[2] + 20
#                                    if conf:
#                                        cv2.putText(frame, name, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
#                                                1, (0, 0, 255), thickness=1, lineType=2)
                
                
                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                score = round(faces[i, 4], 2)
                                if score > face_score_threshold:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(det[2] + margin, img_size[1])
                                    det[3] = np.minimum(det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)

                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame, (int(x), int(y)), 3, (0, 255, 0), -1)
                                    cropped = frame[bb[1]:bb[3], bb[0]:bb[2], :].copy()
                                    
                                    cropped_face = cv2.resize(cropped, (160, 160), interpolation=cv2.INTER_AREA)
                                    feature = face_recognition.recognize(cropped_face)
                                    (name , proba , conf) = face_classfier.classify(feature)
                                    
                                    #cv2.rectangle(frame, (bb[0], bb[1]), (bb[2], bb[3]), (0, 255, 0), 2)
                                    name = name+":%"+ proba
                                    # plot result idx under box
                                    text_x = bb[0] - 10
                                    text_y = bb[1] - 10
                                    if conf:
                                        cv2.putText(frame, name, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
                                                1, (0, 0, 255), thickness=1, lineType=2)
                                    
                                    
                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))

                                    # face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
                                    item_list = [cropped, score, dist_rate, high_ratio_variance, width_rate]
                                    addtional_attribute_list.append(item_list)

                            final_faces = np.array(face_list)

                    trackers = tracker.update(final_faces, img_size, directoryname, addtional_attribute_list, detect_interval)

                    c += 1

                    for d in trackers:
                       # print("D values:",d)
                        if not no_display:
                            d = d.astype(np.int32)
                            cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]), colours[d[4] % 32, :] * 255, 3)
                            if final_faces != []:
#                                cv2.putText(frame, 'ID : %d  DETECT' % (d[4]), (d[0] - 10, d[1] - 10),
#                                            cv2.FONT_HERSHEY_SIMPLEX,
#                                            0.75,
#                                            colours[d[4] % 32, :] * 255, 2)
                                cv2.putText(frame, 'DETECTOR', (5, 45), cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            (1, 1, 1), 2)
                            else:
                                cv2.putText(frame, 'ID : %d' % (d[4]), (d[0] - 10, d[1] - 10), cv2.FONT_HERSHEY_SIMPLEX,
                                            0.75,
                                            colours[d[4] % 32, :] * 255, 2)

                    if not no_display:
                        frame = cv2.resize(frame, (0, 0), fx=show_rate, fy=show_rate)
                        cv2.imshow("Frame", frame)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
#    print("Debugging state:...")
#    print("faces size",faces.shape)
#    print("faces content",faces)
#    print("RGB frame")
#    print(r_g_b_frame)
#    print("RGB frame size",r_g_b_frame.shape)
#    print("face list shape",len(face_list))
#    print(face_list)
#    print("Det",det)
#    
    
   
    cam.release()
    cv2.destroyAllWindows()
# modify the default parameters of np.load
    np.load.__defaults__=(None, False, True, 'ASCII')
fps = int(25)
size = (int(videoCapture1.get(cv2.CAP_PROP_FRAME_WIDTH) / 1),
        int(videoCapture1.get(cv2.CAP_PROP_FRAME_HEIGHT) / 1))

img_stack = []
violation_frame = -1
c = 0

############################ SORT ######################################
from src.sort import Sort
from src.utils import fun_box2hw
import matplotlib.pyplot as plt

cmap = plt.get_cmap('tab20b')
colors = [cmap(i)[:3] for i in np.linspace(0, 1, 20)]
mot_tracker = Sort()
############################ SORT ######################################

############################車牌辨識#####################################

############################車牌辨識#####################################

for c_time, tmp_time in enumerate(partial_inference_video):
    savevideoname = savefilename + '_part{}.avi'.format(c_time)
    #DIVX (avi)
    videoWriter = cv2.VideoWriter(savevideoname,
                                  cv2.VideoWriter_fourcc(*'DIVX'), fps, size)

    video_t_start = tmp_time[0]
    video_t_end = tmp_time[1]
Exemplo n.º 5
0
def main(called_from, stream_name, vid_strt_time, video_folder):

    global colours, img_size
    args = parse_args(video_folder)
    videos_dir = args.videos_dir
    output_path = args.output_path
    no_display = args.no_display
    detect_interval = args.detect_interval  # you need to keep a balance between performance and fluency
    margin = args.margin  # if the face is big in your video ,you can set it bigger for tracking easiler
    scale_rate = args.scale_rate  # if set it smaller will make input frames smaller
    show_rate = args.show_rate  # if set it smaller will dispaly smaller frames
    face_score_threshold = args.face_score_threshold

    mkdir(output_path)
    # for display
    if not no_display:
        colours = np.random.rand(100, 3)

    # init tracker
    tracker = Sort()  # create instance of the SORT tracker

    logger.info('Start track and extract......')
    with tf.Graph().as_default():
        with tf.Session(
                config=tf.ConfigProto(gpu_options=tf.GPUOptions(
                    allow_growth=True),
                                      log_device_placement=False)) as sess:
            pnet, rnet, onet = detect_face.create_mtcnn(
                sess, os.path.join(project_dir, "align"))

            minsize = 70  # minimum size of face for mtcnn to detect
            threshold = [0.6, 0.7, 0.7]  # three steps's threshold
            factor = 0.709  # scale factor

            for filename in os.listdir(videos_dir):
                logger.info('All files:{}'.format(filename))
            for filename in os.listdir(videos_dir):
                suffix = filename.split('.')[1]
                if suffix != 'mp4' and suffix != 'avi' and suffix != 'flv':  # you can specify more video formats if you need
                    continue
                video_name = os.path.join(videos_dir, filename)
                directoryname = os.path.join(output_path,
                                             filename.split('.')[0])
                logger.info('Video_name:{}'.format(video_name))
                cam = cv2.VideoCapture(video_name)
                c = 0
                while True:
                    final_faces = []
                    addtional_attribute_list = []

                    ret, frame = cam.read()

                    start_time.append(time.time())
                    # print(time.time())

                    if not ret:
                        logger.warning("ret false")
                        break
                    if frame is None:
                        logger.warning("frame drop")
                        break

                    frame = cv2.resize(frame, (0, 0),
                                       fx=scale_rate,
                                       fy=scale_rate)
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    if c % detect_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        mtcnn_starttime = time.time()
                        faces, points = detect_face.detect_face(
                            r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                            factor)

                        logger.info(
                            "MTCNN detect face cost time : {} s".format(
                                round(time.time() - mtcnn_starttime,
                                      3)))  # mtcnn detect ,slow
                        face_sums = faces.shape[0]
                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                score = round(faces[i, 4], 6)
                                if score > face_score_threshold:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(
                                        det[2] + margin, img_size[1])
                                    det[3] = np.minimum(
                                        det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)

                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame, (int(x), int(y)),
                                                       3, (0, 255, 0), -1)
                                    cropped = frame[bb[1]:bb[3],
                                                    bb[0]:bb[2], :].copy()

                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))

                                    # face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
                                    item_list = [
                                        cropped, score, dist_rate,
                                        high_ratio_variance, width_rate
                                    ]
                                    addtional_attribute_list.append(item_list)

                            final_faces = np.array(face_list)

                    trackers = tracker.update(final_faces, img_size,
                                              directoryname,
                                              addtional_attribute_list,
                                              detect_interval)

                    c += 1

                    for d in trackers:

                        d = d.astype(np.int32)

                        g.append(str(start_time[4]))
                        if not no_display:

                            d = d.astype(np.int32)

                            if final_faces != []:

                                try:
                                    os.mkdir('DB/' + called_from + str(d[4]))

                                    first_time = round(start_time[0])

                                    face_time = round(time.time())
                                    entryTime = face_time - first_time

                                    dr = parser.parse(vid_strt_time)

                                    a = dr + timedelta(seconds=entryTime)

                                    real_enter_time = a.strftime("%H:%M:%S")

                                    f = open("DB/entryTime.txt", "a")
                                    f.write(called_from + str(d[4]) + ',' +
                                            real_enter_time + "\n")
                                    f.close()

                                    f = open("DB/stream_of_folder.txt", "a")
                                    f.write(stream_name + ',' + called_from +
                                            str(d[4]) + "\n")
                                    f.close()

                                    profile_id = called_from + str(d[4])

                                except Exception:
                                    print("The folder already exists!!")

                                image_path = "DB/" + called_from + str(
                                    d[4]) + '/' + str(
                                        random.randint(32, 12141212)) + ".jpg"

                                d[0] = d[0]
                                d[1] = d[1]

                                save(frame, d, image_path)

                                original_height = (d[3] - d[1])

                    if not no_display:
                        frame = cv2.resize(frame, (0, 0),
                                           fx=show_rate,
                                           fy=show_rate)
Exemplo n.º 6
0
def main():
    global colours, img_size
    args = parse_args()
    #一个或多个视频存放路径
    root_dir = args.root_dir
    #采集并裁剪人脸保存路径
    output_path = args.output_path
    display = args.display
    mkdir(output_path)

    if display:
        colours = np.random.rand(32, 3)

    #初始化tracker
    tracker = Sort()

    logger.info('start track and extract......')
    with tf.Graph().as_default():
        with tf.Session(
                config=tf.ConfigProto(gpu_options=tf.GPUOptions(
                    allow_growth=True),
                                      log_device_placement=False)) as sess:
            pnet, rnet, onet = detect_face.create_mtcnn(sess, "align")

            margin = 50
            minsize = 60
            threshold = [0.6, 0.7, 0.7]
            factor = 0.709
            frame_interval = 1  # 每多少帧检测一次,默认3
            scale_rate = 1  #对输入frame进行resize
            show_rate = 1  #对输出frame进行resize

            for filename in os.listdir(root_dir):
                logger.info('all files:{}'.format(filename))

            #遍历所有mp4格式的视频文件
            for filename in os.listdir(root_dir):
                if filename.split('.')[1] != 'mp4':
                    continue
                video_name = os.path.join(root_dir, filename)
                directoryname = os.path.join(output_path,
                                             filename.split('.')[0])
                logger.info('video_name:{}'.format(video_name))

                cam = cv2.VideoCapture(video_name)
                c = 0
                while True:
                    final_faces = []
                    addtional_attribute_list = []
                    ret, frame = cam.read()
                    if not ret:
                        logger.warning("ret false")
                        break
                    if frame is None:
                        logger.warning("frame drop")
                        break

                    frame = cv2.resize(frame, (0, 0),
                                       fx=scale_rate,
                                       fy=scale_rate)
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)

                    if c % frame_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        faces, points = detect_face.detect_face(
                            r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        face_sums = faces.shape[0]

                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                #检测人脸的置信度
                                f = round(faces[i, 4], 6)
                                if f > 0.95:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(
                                        det[2] + margin, img_size[1])
                                    det[3] = np.minimum(
                                        det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)
                                    frame_copy = frame.copy()
                                    cropped = frame_copy[bb[1]:bb[3],
                                                         bb[0]:bb[2], :]

                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)

                                    #可视化关键点
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame_copy,
                                                       (int(x), int(y)), 3,
                                                       (0, 0, 255), 2)
                                    #计算三个重要值用于判断正脸
                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))

                                    # face addtional attribute(index 0:face score; index 1:0 represents front face and 1 for side face )
                                    item_list = [
                                        cropped, faces[i, 4], dist_rate,
                                        high_ratio_variance, width_rate
                                    ]
                                    addtional_attribute_list.append(item_list)

                            final_faces = np.array(face_list)

                    trackers = tracker.update(final_faces, img_size,
                                              directoryname,
                                              addtional_attribute_list,
                                              r_g_b_frame)

                    c += 1
                    for d in trackers:
                        if display:
                            d = d.astype(np.int32)
                            cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]),
                                          colours[d[4] % 32, :] * 255, 5)
                            cv2.putText(frame, 'ID : %d' % (d[4]),
                                        (d[0] - 10, d[1] - 10),
                                        cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                        colours[d[4] % 32, :] * 255, 2)

                    if display:
                        frame = cv2.resize(frame, (0, 0),
                                           fx=show_rate,
                                           fy=show_rate)
                        cv2.imshow("Frame", frame)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
Exemplo n.º 7
0
def main():
    # 参数设置
    global colours, img_size
    args = parse_args()
    videos_dir = args.videos_dir
    output_path = args.output_path
    no_display = args.no_display
    detect_interval = args.detect_interval  # you need to keep a balance between performance and fluency
    margin = args.margin  # if the face is big in your video ,you can set it bigger for tracking easiler
    scale_rate = args.scale_rate  # if set it smaller will make input frames smaller
    show_rate = args.show_rate  # if set it smaller will dispaly smaller frames
    face_score_threshold = args.face_score_threshold
    # 创建输出目录
    mkdir(output_path)
    # for display
    if not no_display:
        colours = np.random.rand(32, 3)

    # 初始化SORT追踪器
    tracker = Sort()

    logger.info('开始追踪人脸并且提取......')
    with tf.Graph().as_default():
        with tf.Session(
                config=tf.ConfigProto(gpu_options=tf.GPUOptions(
                    allow_growth=True),
                                      log_device_placement=False)) as sess:
            # 创建人脸检测MTCNN的三个网络
            pnet, rnet, onet = detect_face.create_mtcnn(
                sess, os.path.join(project_dir, "align"))
            # 设置MTCNN能检测到的最小size的脸
            minsize = 40  # 40
            # 三个网络的人脸阈值
            threshold = [0.6, 0.7, 0.7]
            # 尺度因子
            factor = 0.709  # scale factor

            for filename in os.listdir(videos_dir):
                logger.info('所需要检测并追踪人脸的文件:{}'.format(filename))
            for filename in os.listdir(videos_dir):
                suffix = filename.split('.')[1]
                if suffix != 'mp4' and suffix != 'avi':  # 可以设置过滤不同的文件格式
                    continue
                video_name = os.path.join(videos_dir, filename)
                directoryname = os.path.join(output_path,
                                             filename.split('.')[0])
                logger.info('当前检测的视频文件:{}'.format(video_name))
                # 创建视频帧扑捉器,参数为文件路径或者0代表本地摄像头
                cam = cv2.VideoCapture(video_name)
                ret, frame = cam.read()
                # 创建视频保存器
                size = (frame.shape[1], frame.shape[0])
                video_writer = cv2.VideoWriter("output/minisize_40_07.avi",
                                               cv2.VideoWriter_fourcc(*'DIVX'),
                                               24, size)
                # 记录已经读取到的帧数
                c = 0
                while ret:  # 循环读取整个视频文件的帧
                    final_faces = []
                    addtional_attribute_list = []
                    # ret表示有没有读取到帧true\false
                    ret, frame = cam.read()
                    if not ret:
                        logger.warning("ret false,没有读取到任何帧!")
                        break
                    if frame is None:
                        logger.warning("frame drop,读取到的帧为空!")
                        break
                    # cv2.resize(src, dsize, dst=None, fx=None, fy=None, interpolation=None)
                    # scr: 原图
                    # dsize:输出图像尺寸
                    # fx: 沿水平轴的比例因子
                    # fy: 沿垂直轴的比例因子
                    # interpolation:插值方法
                    frame = cv2.resize(frame, (0, 0),
                                       fx=scale_rate,
                                       fy=scale_rate)
                    # 将读取到的帧转换为rgb色彩空间
                    r_g_b_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                    # 每隔detect_interval个帧检测跟踪一次
                    if c % detect_interval == 0:
                        img_size = np.asarray(frame.shape)[0:2]
                        # mtcnn开始检测的时间戳,用于计时
                        mtcnn_starttime = time()

                        # 使用MTCNN实施检测,返回检测到的所有可能为face的(x1,y1,x2,y2,score)和对应的landmark
                        faces, points = detect_face.detect_face(
                            r_g_b_frame, minsize, pnet, rnet, onet, threshold,
                            factor)
                        logger.info("MTCNN检测人脸花费时间: {} s".format(
                            round(time() - mtcnn_starttime, 3)))
                        face_sums = faces.shape[0]

                        # 如果检测到的脸大于0,将每张脸剪切出来,并进行侧脸评判
                        if face_sums > 0:
                            face_list = []
                            for i, item in enumerate(faces):
                                score = round(faces[i, 4], 6)
                                if score > face_score_threshold:
                                    det = np.squeeze(faces[i, 0:4])

                                    # face rectangle
                                    det[0] = np.maximum(det[0] - margin, 0)
                                    det[1] = np.maximum(det[1] - margin, 0)
                                    det[2] = np.minimum(
                                        det[2] + margin, img_size[1])
                                    det[3] = np.minimum(
                                        det[3] + margin, img_size[0])
                                    face_list.append(item)

                                    # face cropped
                                    bb = np.array(det, dtype=np.int32)
                                    # bounding box 距离fram左边的距离
                                    bb_left = det[0]
                                    # bounding box 距离fram上边的距离
                                    bb_top = det[1]
                                    # use 5 face landmarks  to judge the face is front or side
                                    squeeze_points = np.squeeze(points[:, i])
                                    tolist = squeeze_points.tolist()
                                    facial_landmarks = []
                                    facial_landmarks_crap = []
                                    for j in range(5):
                                        item = [tolist[j], tolist[(j + 5)]]
                                        facial_landmarks.append(item)
                                        item_crap = [
                                            tolist[j] - bb_left,
                                            tolist[(j + 5)] - bb_top
                                        ]
                                        facial_landmarks_crap.append(item_crap)
                                    # 为脸画出标定点
                                    if args.face_landmarks:
                                        for (x, y) in facial_landmarks:
                                            cv2.circle(frame, (int(x), int(y)),
                                                       3, (0, 255, 0), -1)
                                    # 从帧中复制出人脸
                                    cropped = frame[bb[1]:bb[3],
                                                    bb[0]:bb[2], :].copy()
                                    # 计算五个标定点的高宽比例,高均方差,宽均方差
                                    dist_rate, high_ratio_variance, width_rate = judge_side_face(
                                        np.array(facial_landmarks))
                                    # 整个视频中脸部附加属性addtional_attribute (index 0:face score; index 1:0代表正脸,1代表侧脸 )
                                    item_list = [
                                        cropped, score, dist_rate,
                                        high_ratio_variance, width_rate,
                                        facial_landmarks_crap
                                    ]  ##### 添加参数facial_landmarks
                                    addtional_attribute_list.append(item_list)
                            # 获取的每帧的face的score大于阈值的face
                            final_faces = np.array(face_list)

                    trackers = tracker.update(final_faces, img_size,
                                              directoryname,
                                              addtional_attribute_list,
                                              detect_interval)

                    c += 1

                    for d in trackers:
                        if not no_display:
                            d = d.astype(np.int32)
                            cv2.rectangle(frame, (d[0], d[1]), (d[2], d[3]),
                                          colours[d[4] % 32, :] * 255, 3)
                            if final_faces != []:
                                cv2.putText(frame, 'ID : %d  DETECT' % (d[4]),
                                            (d[0] - 10, d[1] - 10),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            colours[d[4] % 32, :] * 255, 2)
                                cv2.putText(frame, 'DETECTOR', (5, 45),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            (1, 1, 1), 2)
                            else:
                                cv2.putText(frame, 'ID : %d' % (d[4]),
                                            (d[0] - 10, d[1] - 10),
                                            cv2.FONT_HERSHEY_SIMPLEX, 0.75,
                                            colours[d[4] % 32, :] * 255, 2)
                        # video_writer.write(frame)
                        data = {"type_code": type_code, "area_id": area_id}
                        file = {
                            "scene_img":
                            ("scene_img.jpg", cv2.imencode(".jpg",
                                                           frame)[1].tobytes(),
                             "image/jpg")
                        }
                        res = requests.post(url=post_scene_url,
                                            files=file,
                                            data=data)
                        logger.info("检测场景发送到服务器,响应码:{}".format(res))
                    if not no_display:
                        frame = cv2.resize(frame, (0, 0),
                                           fx=show_rate,
                                           fy=show_rate)
                        cv2.imshow("Frame", frame)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break