Exemplo n.º 1
0
    def __init__(self, rate=1):
        """Create Exp(rate) distribution.

        :param rate First shape parameter of exp
        """

        assert rate > 0

        self.rate = rate
        self.UG = UniformDist()
        super().__init__(ContinuousSpace(0, np.inf, open_brackets=False))
Exemplo n.º 2
0
    def __init__(self, shape=1, scale=1):
        """Create Ga(shape,scale) distribution.

        :param shape Shape of Ga(shape,scale)
        :param scale Scale of Ga(shape,scale)
        """
        self.shape = shape
        self.scale = scale

        self.UG = UniformDist()
        if shape >= 1: self.NG = NormalDist()
        super().__init__(ContinuousSpace(0, np.inf, open_brackets=False))
Exemplo n.º 3
0
    def __init__(self, mean=0, var=1):
        """Create LogN(mean, var) distribution.

        :param mean Center of the gaussian
        :param var Variance around the center.
        """
        self.mean = mean
        self.var = var

        # create random generators
        self.NG = NormalDist(mean, var)
        super().__init__(ContinuousSpace(0, np.inf))
Exemplo n.º 4
0
    def __init__(self, m=1, n=1):
        """Create F(m,n) distribution.

        :param m Degrees of freedom
        :param n Degrees of freedom
        """

        # save params
        self.m = m
        self.n = n
        self.BG = BetaDist(m / 2, n / 2)
        super().__init__(ContinuousSpace(0, np.inf, open_brackets=False))
Exemplo n.º 5
0
    def __init__(self, mean=0, var=1):
        """Create N(mean, var) distribution.

        :param mean Center of the gaussian
        :param var Variance around the center.
        """
        self.mean = mean
        self.var = var

        # create random generators
        self.EG = ExpDist()
        self.UG = UniformDist()
        super().__init__(ContinuousSpace(-np.inf, np.inf))
Exemplo n.º 6
0
    def __init__(self, loc=1, scale=1):
        """Creates Gumbel(loc,scale) distribution.

        :param loc Location of the distribution.
        :param scale Scale of the distribution
        """

        # save params
        self.loc = loc
        self.scale = scale

        # create generator
        self.UG = UniformDist()
        super().__init__(ContinuousSpace(-np.inf, np.inf))
Exemplo n.º 7
0
    def __init__(self, v = 1, loc = 0, scale = 1):
        """Create t(v,loc,scale) distribution.

        :param v Degrees of Freedom
        """

        # save params
        self.v = v
        self.loc = loc
        self.scale = scale

        # create generator
        self.UG = UniformDist()
        super().__init__(ContinuousSpace(-np.inf, np.inf))
Exemplo n.º 8
0
    def __init__(self, shape=1, scale=1):
        """Creates Pareto(shape,scale) distribution.

        :param shape Shape of the distribution.
        :param scale Scale of the distribution
        """

        # save params
        self.shape = shape
        self.scale = scale

        # create generator
        self.UG = UniformDist()
        super().__init__(ContinuousSpace(0, np.inf, open_brackets=False))
Exemplo n.º 9
0
    def __init__(self, loc=0, scale=1):
        """Creates Laplace(loc,scale) distribution.

        :param loc Location of the distribution.
        :param scale Scale of the distribution
        """

        # save params
        self.loc = loc
        self.scale = scale

        # create generator
        self.NG = NormalDist()
        self.EG = ExpDist()
        super().__init__(ContinuousSpace(-np.inf, np.inf))
Exemplo n.º 10
0
    def __init__(self, a=1, b=1):
        """Create Beta(a,b) distribution.

        :param a First shape parameter of beta
        :param b Second shape parameter of beta
        """

        assert a > 0 and b > 0

        # save params
        self.a = a
        self.b = b

        # create two distributions when one wants to sample
        self.GaG = GammaDist(self.a, 1)
        self.GbG = GammaDist(self.b, 1)

        # define the space of the distribution
        super().__init__(ContinuousSpace(0, 1))