def test_discretize_in_multiple_points1(self):
        def three_points_almost_equals(theroical_three_points,
                                       actual_three_points):
            def almost_equals(a, b):
                return la.norm(
                    np.array(a.coordinates) - np.array(b.coordinates)) < 1e-10

            res = True
            for i in range(3):
                res = res and almost_equals(theroical_three_points[i],
                                            actual_three_points[i])
            return res
        theroical_three_points1 = list(map((lambda x: Point(self.discretisator3.change_base_u_to_e(x))),\
                                           self.theorical_three_point_in_u31))
        actual_three_points1 = self.discretisator3.discretize_in_multiple_points(Point(\
                    self.discretisator3.change_base_u_to_e(self.central_point_coord_in_base_u31)))
        assert three_points_almost_equals(
            theroical_three_points1,
            actual_three_points1), str(actual_three_points1)
        theroical_three_points2 = list(map((lambda x: Point(self.discretisator3.change_base_u_to_e(x))), \
                                           self.theorical_three_point_in_u32))
        actual_three_points2 = self.discretisator3.discretize_in_multiple_points(Point( \
            self.discretisator3.change_base_u_to_e(self.central_point_coord_in_base_u32)))
        assert three_points_almost_equals(
            theroical_three_points2,
            actual_three_points2), str(actual_three_points2)
Exemplo n.º 2
0
 def setUp(self):
     """Initialize tests."""
     self.bf_tester = BloomFilterTester(10, 80)
     self.bf_tester.feed([Point([0.5, 0.5])],
                         discretisator=RectangleDiscretisator(1))
     self.discretized_points = [
         Point([0.0, 0.0]),
         Point([1.0, 0.0]),
         Point([0.0, 1.0]),
         Point([1.0, 1.0])
     ]
    def setUp(self):
        """Initialize tests."""
        self.bf_tester = BloomFilterTester(
            10, 8000, 2, discretisator=CircleDiscretisator2D(5))
        self.bf_tester.feed([Point([5, 5])])
        self.discretized_points = [
            Point([5, 5]),
            Point([5, 6]),
            Point([5, 4]),
            Point([6, 5]),
            Point([4, 5]),
            Point([4, 7]),
            Point([101, 90])
        ]

        # Second test

        dim = 2
        delta = 5
        feed_data = RandomDataGenerator(dim,
                                        size_of_data_set=200,
                                        domain=1000000)
        feed_data.genarate()

        self.similar_data = RandomDataGenerator(dim,
                                                size_of_data_set=200,
                                                domain=1000000)
        self.similar_data.genarate_similar(delta, feed_data.get_points())

        Cdiscretizor = CircleDiscretisator2D(10)

        self.bf2 = BloomFilterTester(200, 3200, 2, discretisator=Cdiscretizor)
        self.bf2.feed(feed_data.get_points())
Exemplo n.º 4
0
    def get_points(self):
        # We test if the file exist
        path_file = Path(self.file_path)
        self.logger.info('We get the points from' + str(path_file))

        if not path_file.is_file():
            self.logger.error('The file does not exist')
            raise Exception("The file does not exist" + str(path_file))

        data_file = pd.read_csv(str(path_file))
        line_counter = -1
        try:
            for i, row in enumerate(data_file.values):
                line_counter += 1
                coodinates = [
                    Decimal(int(elem)) for index, elem in enumerate(row)
                    if index != 0
                ]

                # We get a dimension problem.
                if len(coodinates) != self.dimension:
                    self.logger.error(
                        'The dimension is not correct, expected : ' +
                        str(len(coodinates)) + str(self.dimension))
                    raise Exception("The dimension of the point at line " +
                                    str(line_counter) + " is not correct")
                self.point_list.append(Point(coodinates))

        except Exception as e:
            self.logger.error("Probleme during reading line " +
                              str(line_counter))
            raise e

        return self.point_list
Exemplo n.º 5
0
class PointTest(unittest.TestCase):
    """Test case used for tests my Point class."""

    def setUp(self):
        """Initialize tests."""
        self.point_a = Point([1,2])
        self.point_b = Point([4,6])

    def test_distance(self):
        """Test of function distance."""
        dist = self.point_a.distance(self.point_b)
        self.assertEqual(5, dist)

    def test_zero_distance(self):
        """Test of function distance."""
        dist = self.point_a.distance(self.point_a)
        self.assertEqual(0, dist)
Exemplo n.º 6
0
    def setUp(self):
        """Initialize tests."""

        self.discretisator = RectangleDiscretisator(5)
        """"For minimize"""

        self.point_a = Point([7])
        self.point_b = Point([5])
        self.point_c = Point([10])
        self.point_d = Point([1, 32])
        self.point_e = Point([5, 10])
        """"For discrette"""
        self.point_f = Point([7])
        self.point_g = Point([5])
        self.point_h = Point([10])
        self.point_i = Point([1, 32])
        self.point_j = Point([5, 10])
    def setUp(self):
        """Initialize tests."""

        # For test_change_base_e_to_u
        self.discretisator1 = CircleDiscretisator2D(10)

        # For test_four_points_around
        self.discretisator2 = CircleDiscretisator2D(10)
        self.point_coord_in_base_u = [0.5, 0.5]

        # For test_get_three_closer_points & test_discretize_in_multiple_points1
        self.discretisator3 = CircleDiscretisator2D(10)
        self.central_point_coord_in_base_u31 = [0.1, 0.1]
        self.theorical_three_point_in_u31 = ([0.0, 0.0], [1.0,
                                                          0.0], [0.0, 1.0])
        self.central_point_coord_in_base_u32 = [0.9, 0.9]
        self.theorical_three_point_in_u32 = ([1.0, 0.0], [0.0,
                                                          1.0], [1.0, 1.0])

        # For test_get_three_descretized_points_around2 & test_discretize_in_one_point
        self.discretisator4 = CircleDiscretisator2D(10)
        self.central_point41 = Point(
            self.discretisator4.change_base_u_to_e([0.1, 0.1]))
        self.central_point42 = Point(
            self.discretisator4.change_base_u_to_e([0.9, 0.9]))
        self.central_point43 = Point(
            self.discretisator4.change_base_u_to_e([1.1, 0.1]))
        self.central_point44 = Point(
            self.discretisator4.change_base_u_to_e([0.1, 1.1]))

        # Only for test_discretize_in_one_point
        self.central_point45 = Point(
            self.discretisator4.change_base_u_to_e([0.9, 0.1]))
        self.central_point46 = Point(
            self.discretisator4.change_base_u_to_e([0.1, 0.9]))
 def discretise_point(self, point):
     """
     Apply a combinatory ceil and floor to each coordinate of the given point in parameter, according to the lambda_error.
     Return a list of points that enclose the given point in parameter, in function of the dimension of the point and the lambda_error
     Args :
     :param point: coordinates which have to be maximised
     """
     #deepcopy the point given in parmeter to prevent instruction to modify it and be able able to use it again without modification
     point_c = deepcopy(point)
     results = []
     results.append(Point(self.minimisePoint(point_c.coordinates)))
     self.discretise_recursive(point_c.coordinates, point.coordinates, 0,
                               results)
     return results
Exemplo n.º 9
0
    def four_points_around(self, point_coord_in_base_u):
        """

        :param point_coord_in_base_u:
        :return: tuple of for point that are around the point represented by the coordonate : point_coord_in_base_u
        """
        floored_x_coord = math.floor(point_coord_in_base_u[0])
        floored_y_coord = math.floor(point_coord_in_base_u[1])
        down_left = Point(
            list(
                np.transpose(
                    np.dot(self.transition_matrix_u_to_e,
                           np.array([[floored_x_coord],
                                     [floored_y_coord]])))[0]))
        down_right = Point(
            list(
                np.transpose(
                    np.dot(
                        self.transition_matrix_u_to_e,
                        np.array([[floored_x_coord + 1],
                                  [floored_y_coord]])))[0]))
        up_left = Point(
            list(
                np.transpose(
                    np.dot(
                        self.transition_matrix_u_to_e,
                        np.array([[floored_x_coord],
                                  [floored_y_coord + 1]])))[0]))
        up_right = Point(
            list(
                np.transpose(
                    np.dot(
                        self.transition_matrix_u_to_e,
                        np.array([[floored_x_coord + 1],
                                  [floored_y_coord + 1]])))[0]))
        return (down_left, down_right, up_left, up_right)
 def genarate_similar(self, delta, data_set, save_file_name=None):
     """
     This method genrate the data and store it into the object attribute point_list. Each point generated in
         list_point is at least at <delta> from any point in <data_set>.
     :param delta: (float) the minimum distance between the point <point> to the <data_set>
     :param data_set: The data set in form of list of object Point
     :param save_file_name: name of the file in which we will store the generate data for next tests.
         if this parameter if not registered the data will be not save.
     :return: Nothing
     """
     number_of_vector = 0
     number_of_test = 0
     array_vector = []
     while number_of_vector < self.size_of_data_set:
         index = randint(0, len(data_set) - 1)
         vct = list(data_set[index].coordinates)
         for i in range(len(vct)):
             vct[i] += uniform(0, 1) * delta
         point = Point(vct)
         if point.distance(data_set[index]) < delta:
             self.point_list.append(point)
             array_vector.append(vct)
             number_of_vector += 1
         number_of_test += 1
         if number_of_test >= 1000 * len(data_set):
             logger.error("infinit loop to construct similar")
             assert (False)
     if save_file_name:
         try:
             os.remove(
                 os.path.join(os.getcwd(), DATA_FOLDER, save_file_name))
         except OSError:
             pass
         pd.DataFrame(array_vector).to_csv(os.path.join(
             os.getcwd(), DATA_FOLDER, save_file_name),
                                           encoding='utf-8')
 def discretise_recursive(self, point, original_points, starting_index,
                          results):
     """
     shouldn't be called directly, call for discretise
     """
     for i in range(starting_index, len(point)):
         if point[i] != original_points[i]:
             #the original value of point should be the same for each passage in the loop  so deepcopy
             point_c = point[:]
             if self.method_type == Constants.DIS_DOUBLE:
                 point_c[i] += self.lambda_error
             else:
                 point_c[i] += 2 * self.lambda_error
             results.append(Point(point_c))
             self.discretise_recursive(point_c, original_points, i + 1,
                                       results)
    def test_discretize_in_one_point(self):
        def almost_equals(a, b):
            return la.norm(np.array(a.coordinates) -
                           np.array(b.coordinates)) < 1e-10

        closest_dis_point1 = self.discretisator4.discretize_in_one_point(
            self.central_point41)
        closest_dis_point2 = self.discretisator4.discretize_in_one_point(
            self.central_point42)
        closest_dis_point3 = self.discretisator4.discretize_in_one_point(
            self.central_point45)
        closest_dis_point4 = self.discretisator4.discretize_in_one_point(
            self.central_point46)

        assert almost_equals(closest_dis_point1, Point(
            [0, 0])), str(closest_dis_point1) + "    " + str(Point([0, 0]))
        assert almost_equals(closest_dis_point2, Point(self.discretisator4.change_base_u_to_e([1, 1]))),\
                             str(closest_dis_point2) + "    " + str(Point([1, 1]))
        assert almost_equals(closest_dis_point3, Point(self.discretisator4.change_base_u_to_e([1, 0]))), \
            str(closest_dis_point3) + "    " + str(Point([1, 0]))
        assert almost_equals(closest_dis_point4, Point(self.discretisator4.change_base_u_to_e([0, 1]))), \
            str(closest_dis_point4) + "    " + str(Point([0, 1]))
 def genarate(self, save_file_name=None):
     """
     This method genrate the data and store it into the object attribute point_list.
     :param save_file_name: name of the file in which we will store the generate data for next tests.
         if this parameter if not registered the data will be not save.
     :return: Nothing.
     """
     array_vector = np.random.randint(self.domain,
                                      size=(self.size_of_data_set,
                                            self.dimension))
     for vct in array_vector:
         self.point_list.append(Point(list(vct)))
     if save_file_name:
         try:
             os.remove(
                 os.path.join(os.getcwd(), DATA_FOLDER, save_file_name))
         except OSError:
             pass
         vector_data_frame_ = pd.DataFrame(array_vector)
         vector_data_frame_.to_csv(os.path.join(os.getcwd(), DATA_FOLDER,
                                                save_file_name),
                                   encoding='utf-8')
    def genarate_falses(self, delta, data_set, save_file_name=None):
        """
        This method genrate the data and store it into the object attribute point_list. Each point generated in
            list_point is at least at <delta> from any point in <data_set>.
        :param delta: (float) the minimum distance between the point <point> to the <data_set>
        :param data_set: The data set in form of list of object Point
        :param save_file_name: name of the file in which we will store the generate data for next tests.
            if this parameter if not registered the data will be not save.
        :return: Nothing
        """
        number_of_vector = 0
        number_of_test = 0
        array_vector = []
        while number_of_vector < self.size_of_data_set:
            vct = np.random.randint(self.domain,
                                    size=(self.size_of_data_set,
                                          self.dimension)).tolist()[0]
            point = Point(vct)
            if self.distant_enough(point, delta, data_set):
                self.point_list.append(point)
                array_vector.append(vct)
                number_of_vector += 1
            number_of_test += 1
            if number_of_test >= 1000 * len(data_set):
                logger.error("infinite loop to construct different")
                assert (False)

        if save_file_name:
            try:
                os.remove(
                    os.path.join(os.getcwd(), DATA_FOLDER, save_file_name))
            except OSError:
                pass
            pd.DataFrame(array_vector).to_csv(os.path.join(
                os.getcwd(), DATA_FOLDER, save_file_name),
                                              encoding='utf-8')

        return array_vector
 def test_four_points_around(self):
     def almost_equals(a, b):
         return la.norm(np.array(a.coordinates) -
                        np.array(b.coordinates)) < 1e-10
     assert almost_equals(self.discretisator2.four_points_around(self.point_coord_in_base_u)[0], Point([0.0, 0.0])),\
             self.discretisator2.four_points_around(self.point_coord_in_base_u)[0].to_string()
     assert almost_equals(self.discretisator2.four_points_around(self.point_coord_in_base_u)[1], Point(list(\
             self.discretisator2.u1))), self.discretisator2.four_points_around(self.point_coord_in_base_u)[1].\
             to_string()
     assert almost_equals(self.discretisator2.four_points_around(self.point_coord_in_base_u)[2], Point(list(\
             self.discretisator2.u2))), self.discretisator2.four_points_around(self.point_coord_in_base_u)[2]. \
             to_string()
     assert almost_equals(self.discretisator2.four_points_around(self.point_coord_in_base_u)[3], Point(list( \
             self.discretisator2.u2+self.discretisator2.u1))), self.discretisator2.four_points_around(self.\
             point_coord_in_base_u)[3].to_string()
Exemplo n.º 16
0
 def setUp(self):
     """Initialize tests."""
     self.point_a = Point([1,2])
     self.point_b = Point([4,6])