Exemplo n.º 1
0
 def _set_data_loaders(self):
     mode_ids = {'train': 0, 'val': 1, 'test': 2}
     annotations = np.array(load_annotations(
         self._task, self._dataset,
         self._filter_duplicate_rels, self._filter_multiple_preds)[0])
     split_ids = np.array([anno['split_id'] for anno in annotations])
     if self._dataset != 'VRD':
         datasets = {
             split: SGGDataset(
                 annotations[split_ids == split_id].tolist(),
                 self.config, self.features)
             for split, split_id in mode_ids.items()
         }
     else:
         datasets = {
             'train': SGGDataset(
                 annotations[split_ids == 0].tolist()
                 + annotations[split_ids == 1].tolist(),
                 self.config, self.features),
             'val': SGGDataset(
                 annotations[split_ids == 2].tolist(),
                 self.config, self.features),
             'test': SGGDataset(
                 annotations[split_ids == 2].tolist(),
                 self.config, self.features)
         }
     self._data_loaders = {
         split: SGGDataLoader(
             datasets[split], batch_size=self._batch_size,
             shuffle=split == 'train', num_workers=self._num_workers,
             drop_last=split in {'train', 'val'},
             collate_fn=lambda data: sgg_collate_fn(data, self.features),
             use_cuda=self._use_cuda)
         for split in mode_ids
     }
Exemplo n.º 2
0
 def __init__(self, mode='relationship'):
     """Initialize model parameters and load annotations."""
     self._mode = mode
     self._created_images_path = CONFIG['created_images_path']
     self._orig_images_path = CONFIG['orig_images_path']
     if not os.path.exists(self._created_images_path):
         os.mkdir(self._created_images_path)
     self._annotations = load_annotations(mode)
Exemplo n.º 3
0
 def test(self, batch_size=100, test_mode='relationship'):
     """Test a neural network."""
     print("Testing %s on VRD." % (self.net_name))
     self.net.eval()
     data_loader = self._set_test_data_loader(
         batch_size=batch_size, test_mode=test_mode).eval()
     if self.use_cuda:
         self.net.cuda()
         data_loader.cuda()
     scores, boxes, labels = {}, {}, {}
     for batch in data_loader.get_batches():
         outputs = self._net_outputs(data_loader, 0, batch)
         filenames = data_loader.get_files(0, batch)
         scores.update({
             filename: np.array(score_vec)
             for filename, score_vec
             in zip(filenames, outputs.cpu().detach().numpy().tolist())
         })
         boxes.update(data_loader.get_boxes(0, batch))
         labels.update(data_loader.get_labels(0, batch))
     debug_scores = {
         filename: np.argmax(scores[filename])
         for filename in scores
     }
     annotations = load_annotations('test')
     debug_labels = {
         rel['filename'][:rel['filename'].rfind('.')]: rel['predicate_id']
         for anno in annotations
         for rel in anno['relationships']
     }
     debug_annos = {
         rel['filename'][:rel['filename'].rfind('.')]: (
             rel,
             scores[rel['filename'][:rel['filename'].rfind('.')]].tolist()
         )
         for anno in annotations
         for rel in anno['relationships']
         if rel['filename'][:rel['filename'].rfind('.')] in scores
     }
     with open(self.net_name + '.json', 'w') as fid:
         json.dump(debug_annos, fid)
     print(sum(
         1 for name in debug_scores
         if debug_scores[name] == debug_labels[name]))
     with open(self.net_name + '.txt', 'w') as fid:
         fid.write(json.dumps([
             name for name in debug_scores
             if debug_scores[name] == debug_labels[name]]))
     for mode in ['relationship', 'unseen', 'seen']:
         for keep in [1, 70]:
             print(
                 'Recall@50-100 (top-%d) %s:' % (keep, mode),
                 evaluate_relationship_recall(
                     scores, boxes, labels, keep, mode
                 )
             )
Exemplo n.º 4
0
    def __init__(self, dataset):
        """Initialize evaluator setup for this dataset."""
        self.reset()

        # Ground-truth labels and boxes
        annos, _ = load_annotations('preddet', dataset)
        self._annos = {
            anno['filename']: anno
            for anno in annos if anno['split_id'] == 2
        }
Exemplo n.º 5
0
 def _reset(self, mode):
     """Reset loader."""
     self._mode['current'] = mode
     self._annotations = load_annotations(self._mode['current'],
                                          self._json_path)
     self._set_targets()
     self._set_boxes()
     self._set_labels()
     self._set_probabilities()
     self._set_subject_object_one_hot_encodings()
     self._set_subject_object_embeddings()
     self._files = list(self._labels.keys())
     self._epoch = -1
Exemplo n.º 6
0
def gt_labels_and_bboxes(mode):
    """
    Return ground truth labels and bounding boxes.

    - gt_labels: dict of list of (N, 3) arrays (subj, pred, obj)
    - gt_bboxes: dict of list of (N, 2, 4) arrays (boxes)
    """
    if mode == 'relationship':
        annotations = load_annotations('test')
    else:
        annotations = load_annotations(mode)
    gt_labels = {
        anno['filename'][:anno['filename'].rfind('.')]:
        np.array([[rel['subject_id'], rel['predicate_id'], rel['object_id']]
                  for rel in anno['relationships']])
        for anno in annotations
    }
    gt_bboxes = {
        anno['filename'][:anno['filename'].rfind('.')]:
        np.array([[rel['subject_box'], rel['object_box']]
                  for rel in anno['relationships']])
        for anno in annotations
    }
    return gt_labels, gt_bboxes
Exemplo n.º 7
0
    def __init__(self, dataset):
        """Initialize evaluator setup for this dataset."""
        self._recall_types = np.array([20, 50, 100])  # R@20, 50, 100
        self._max_recall = self._recall_types[-1]
        self.reset()

        # Ground-truth labels and boxes
        annos, zeroshot_annos = load_annotations('preddet', dataset)
        self._annos = {
            'full': {
                anno['filename']: anno
                for anno in annos if anno['split_id'] == 2
            },
            'zeroshot': {anno['filename']: anno
                         for anno in zeroshot_annos}
        }