Exemplo n.º 1
0
  def _maybe_calibrate_size(self, layers, out_filters, is_training):
    """Makes sure layers[0] and layers[1] have the same shapes."""

    hw = [self._get_HW(layer) for layer in layers]
    c = [self._get_C(layer) for layer in layers]

    with tf.variable_scope("calibrate"):
      x = layers[0]
      if hw[0] != hw[1]:
        assert hw[0] == 2 * hw[1]
        with tf.variable_scope("pool_x"):
          x = tf.nn.relu(x)
          x = self._factorized_reduction(x, out_filters, 2, is_training)
      elif c[0] != out_filters:
        with tf.variable_scope("pool_x"):
          w = create_weight("w", [1, 1, c[0], out_filters])
          x = tf.nn.relu(x)
          x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          x = batch_norm(x, is_training, data_format=self.data_format)

      y = layers[1]
      if c[1] != out_filters:
        with tf.variable_scope("pool_y"):
          w = create_weight("w", [1, 1, c[1], out_filters])
          y = tf.nn.relu(y)
          y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                           data_format=self.data_format)
          y = batch_norm(y, is_training, data_format=self.data_format)
    return [x, y]
Exemplo n.º 2
0
    def _shape_layer(self, layer_id, prev_layers, start_idx, out_filters, is_training, mask_idx):

        inputs = prev_layers[-1]
        inp_c = self._get_C(inputs)
        count = self.sample_arc[start_idx]
        shape = self.sample_shape[mask_idx]

        mask = False
        if count in [0, 1]:
            out = self._conv_ops(inputs, [1, 1, inp_c, out_filters], "conv_1x1", is_training)
            with tf.variable_scope("".format(3)):
                out = tf.nn.relu(out)
                out = conv_3_3_search(out, out_filters, self.data_format, shape)
                out = batch_norm(out, is_training, data_format=self.data_format)
                mask = True

        elif count in [2, 3]:
            out = self._conv_ops(inputs, [1, 1, inp_c, out_filters], "conv_1x1", is_training)
            with tf.variable_scope("conv_{0}x{0}".format(5)):
                out = tf.nn.relu(out)
                out = conv_5_5_search(out, out_filters, self.data_format, shape)
                out = batch_norm(out, is_training, data_format=self.data_format)
                mask = True

        elif count == 4:
            out = tf.layers.average_pooling2d(
                inputs, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
        elif count == 5:
            out = tf.layers.max_pooling2d(
                inputs, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
        else:
            raise ValueError("Unknown operation number '{0}'".format(count))

        if layer_id > 0:
            skip_start = start_idx + 1
            skip = self.sample_arc[skip_start: skip_start + layer_id]
            total_skip_channels = np.sum(skip) + 1

            res_layers = []
            for i in range(layer_id):
                if skip[i] == 1:
                    res_layers.append(prev_layers[i])
            prev = res_layers + [out]

            if self.data_format == "NHWC":
                prev = tf.concat(prev, axis=3)
            elif self.data_format == "NCHW":
                prev = tf.concat(prev, axis=1)

            out = prev
            with tf.variable_scope("skip"):
                w = create_weight(
                    "w", [1, 1, total_skip_channels * out_filters, out_filters])
                out = tf.nn.relu(out)
                out = tf.nn.conv2d(
                    out, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
                out = batch_norm(out, is_training, data_format=self.data_format)

        return out, mask
Exemplo n.º 3
0
  def _enas_cell(self, x, curr_cell, prev_cell, op_id, out_filters):
    """Performs an enas operation specified by op_id."""

    num_possible_inputs = curr_cell + 1

    with tf.variable_scope("avg_pool"):
      avg_pool = tf.layers.average_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      avg_pool_c = self._get_C(avg_pool)
      if avg_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, avg_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, avg_pool_c, out_filters])
          avg_pool = tf.nn.relu(avg_pool)
          avg_pool = tf.nn.conv2d(avg_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          avg_pool = batch_norm(avg_pool, is_training=True,
                                data_format=self.data_format)

    with tf.variable_scope("max_pool"):
      max_pool = tf.layers.max_pooling2d(
        x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
      max_pool_c = self._get_C(max_pool)
      if max_pool_c != out_filters:
        with tf.variable_scope("conv"):
          w = create_weight(
            "w", [num_possible_inputs, max_pool_c * out_filters])
          w = w[prev_cell]
          w = tf.reshape(w, [1, 1, max_pool_c, out_filters])
          max_pool = tf.nn.relu(max_pool)
          max_pool = tf.nn.conv2d(max_pool, w, strides=[1, 1, 1, 1],
                                  padding="SAME", data_format=self.data_format)
          max_pool = batch_norm(max_pool, is_training=True,
                                data_format=self.data_format)

    x_c = self._get_C(x)
    if x_c != out_filters:
      with tf.variable_scope("x_conv"):
        w = create_weight("w", [num_possible_inputs, x_c * out_filters])
        w = w[prev_cell]
        w = tf.reshape(w, [1, 1, x_c, out_filters])
        x = tf.nn.relu(x)
        x = tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
        x = batch_norm(x, is_training=True, data_format=self.data_format)

    out = [
      self._enas_conv(x, curr_cell, prev_cell, 3, out_filters),
      self._enas_conv(x, curr_cell, prev_cell, 5, out_filters),
      avg_pool,
      max_pool,
      x,
    ]

    out = tf.stack(out, axis=0)
    out = out[op_id, :, :, :, :]
    return out
Exemplo n.º 4
0
    def _factorized_reduction(self, x, out_filters, stride, is_training):
        """Reduces the shape of x without information loss due to striding."""
        assert out_filters % 2 == 0, (
            "Need even number of filters when using this factorized reduction.")
        if stride == 1:
            with tf.variable_scope("path_conv"):
                inp_c = self._get_C(x)
                w = create_weight("w", [1, 1, inp_c, out_filters])
                x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                                 data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)
                return x

        stride_spec = self._get_strides(stride)
        # Skip path 1
        path1 = tf.nn.avg_pool(
            x, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
        with tf.variable_scope("path1_conv"):
            inp_c = self._get_C(path1)
            w = create_weight("w", [1, 1, inp_c, out_filters // 2])
            path1 = tf.nn.conv2d(path1, w, [1, 1, 1, 1], "SAME",
                                 data_format=self.data_format)

        # Skip path 2
        # First pad with 0"s on the right and bottom, then shift the filter to
        # include those 0"s that were added.
        if self.data_format == "NHWC":
            pad_arr = [[0, 0], [0, 1], [0, 1], [0, 0]]
            path2 = tf.pad(x, pad_arr)[:, 1:, 1:, :]
            concat_axis = 3
        else:
            pad_arr = [[0, 0], [0, 0], [0, 1], [0, 1]]
            path2 = tf.pad(x, pad_arr)[:, :, 1:, 1:]
            concat_axis = 1

        path2 = tf.nn.avg_pool(
            path2, [1, 1, 1, 1], stride_spec, "VALID", data_format=self.data_format)
        with tf.variable_scope("path2_conv"):
            inp_c = self._get_C(path2)
            w = create_weight("w", [1, 1, inp_c, out_filters // 2])
            path2 = tf.nn.conv2d(path2, w, [1, 1, 1, 1], "SAME",
                                 data_format=self.data_format)

        # Concat and apply BN
        final_path = tf.concat(values=[path1, path2], axis=concat_axis)
        final_path = batch_norm(final_path, is_training,
                                data_format=self.data_format)

        return final_path
Exemplo n.º 5
0
    def _pool_branch(self, inputs, is_training, count, avg_or_max, start_idx=None):
        """
        Args:
          start_idx: where to start taking the output channels. if None, assuming
            fixed_arc mode
          count: how many output_channels to take.
        """

        assert start_idx is not None

        inp_c = self._get_C(inputs)

        with tf.variable_scope("conv_1"):
            w = create_weight("w", [1, 1, inp_c, self.out_filters])
            x = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
            x = batch_norm(x, is_training, data_format=self.data_format)
            x = tf.nn.relu(x)

        with tf.variable_scope("pool"):

            if avg_or_max == "avg":
                x = tf.layers.average_pooling2d(
                    x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
            elif avg_or_max == "max":
                x = tf.layers.max_pooling2d(
                    x, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
            else:
                raise ValueError("Unknown pool {}".format(avg_or_max))

            if self.data_format == "NHWC":
                x = x[:, :, :, start_idx: start_idx + count]
            elif self.data_format == "NCHW":
                x = x[:, start_idx: start_idx + count, :, :]

        return x
Exemplo n.º 6
0
    def _conv_branch(self, inputs, filter_size, is_training, count, out_filters, start_idx=None):
        """
        Args:
          start_idx: where to start taking the output channels. if None, assuming
            fixed_arc mode
          count: how many output_channels to take.
        """

        assert start_idx is not None

        inp_c = self._get_C(inputs)

        with tf.variable_scope("inp_conv_1"):
            w = create_weight("w", [1, 1, inp_c, out_filters])
            x = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
            x = batch_norm(x, is_training, data_format=self.data_format)
            x = tf.nn.relu(x)

        with tf.variable_scope("out_conv_{}".format(filter_size)):
            w = create_weight("w", [filter_size, filter_size, out_filters, out_filters])
            w = tf.transpose(w, [3, 0, 1, 2])
            w = w[start_idx:start_idx + count, :, :, :]
            w = tf.transpose(w, [1, 2, 3, 0])

            x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
            mask = tf.range(0, out_filters, dtype=tf.int32)
            mask = tf.logical_and(start_idx <= mask, mask < start_idx + count)
            x = batch_norm_with_mask(
                x, is_training, mask, out_filters, data_format=self.data_format)
            x = tf.nn.relu(x)
        return x
Exemplo n.º 7
0
    def _sep_conv_branch(self, inputs, filter_size, is_training, count, out_filters, ch_mul=1, start_idx=None):

        assert start_idx is not None

        inp_c = self._get_C(inputs)

        with tf.variable_scope("inp_conv_1"):
            w = create_weight("w", [1, 1, inp_c, out_filters])
            x = tf.nn.conv2d(inputs, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
            x = batch_norm(x, is_training, data_format=self.data_format)
            x = tf.nn.relu(x)

        with tf.variable_scope("out_conv_{}".format(filter_size)):
            w_depth = create_weight("w_depth", [filter_size, filter_size, out_filters, ch_mul])
            w_point = create_weight("w_point", [out_filters, out_filters * ch_mul])
            w_point = w_point[start_idx:start_idx + count, :]
            w_point = tf.transpose(w_point, [1, 0])
            w_point = tf.reshape(w_point, [1, 1, out_filters * ch_mul, count])

            x = tf.nn.separable_conv2d(x, w_depth, w_point, strides=[1, 1, 1, 1],
                                       padding="SAME", data_format=self.data_format)
            mask = tf.range(0, out_filters, dtype=tf.int32)
            mask = tf.logical_and(start_idx <= mask, mask < start_idx + count)
            x = batch_norm_with_mask(
                x, is_training, mask, out_filters, data_format=self.data_format)
            x = tf.nn.relu(x)
        return x
Exemplo n.º 8
0
  def _fixed_conv(self, x, f_size, out_filters, stride, is_training,
                  stack_convs=2):
    """Apply fixed convolution.

    Args:
      stacked_convs: number of separable convs to apply.
    """

    for conv_id in range(stack_convs):
      inp_c = self._get_C(x)
      if conv_id == 0:
        strides = self._get_strides(stride)
      else:
        strides = [1, 1, 1, 1]

      with tf.variable_scope("sep_conv_{}".format(conv_id)):
        w_depthwise = create_weight("w_depth", [f_size, f_size, inp_c, 1])
        w_pointwise = create_weight("w_point", [1, 1, inp_c, out_filters])
        x = tf.nn.relu(x)
        x = tf.nn.separable_conv2d(
          x,
          depthwise_filter=w_depthwise,
          pointwise_filter=w_pointwise,
          strides=strides, padding="SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)

    return x
Exemplo n.º 9
0
    def _model(self, x_train, is_training, reuse=False):
        with tf.variable_scope(self.name, reuse=reuse):
            layers = []

            out_filters = self.out_filters
            with tf.variable_scope("stem_conv"):
                w = create_weight("w", [3, 3, 3, out_filters])
                x = tf.nn.conv2d(x_train, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
                x = batch_norm(x, is_training, data_format=self.data_format)
                layers.append(x)

            start_idx = 0
            mask_idx = 0

            for layer_id in range(self.num_layers):
                with tf.variable_scope("layer_{0}".format(layer_id)):
                    if self.search_space == "net":
                        x, masked = self._enas_layer(layer_id, layers, start_idx, out_filters, is_training)
                    elif self.search_space == "shape":
                        x, masked = self._shape_layer(layer_id, layers, start_idx, out_filters, is_training, mask_idx)
                    else:
                        x, masked = self._fixed_layer(layer_id, layers, start_idx, out_filters, is_training, mask_idx)
                    layers.append(x)
                    if layer_id in self.pool_layers:
                        if self.fixed_arc is not None:
                            out_filters *= 2
                        with tf.variable_scope("pool_at_{0}".format(layer_id)):
                            pooled_layers = []
                            for i, layer in enumerate(layers):
                                with tf.variable_scope("from_{0}".format(i)):
                                    x = self._factorized_reduction(
                                        layer, out_filters, 2, is_training)
                                pooled_layers.append(x)
                            layers = pooled_layers
                start_idx += 1 + layer_id
                if masked:
                    mask_idx += 1
                print(layers[-1])

            x = tf.keras.layers.UpSampling2D(data_format=self.actual_data_format, size=(2, 2))(x)
            print(x)

            x = tf.keras.layers.UpSampling2D(data_format=self.actual_data_format, size=(2, 2))(x)
            print(x)

            with tf.variable_scope("final"):
                inp_c = self._get_C(x)
                x = self._conv_ops(x, [1, 1, inp_c, self.num_class], "final", is_training)
            print(x)
            # x = global_avg_pool(x, data_format=self.data_format)

            if is_training:
                x = tf.nn.dropout(x, self.keep_prob)

        return x
Exemplo n.º 10
0
    def _sep_conv_ops(self, inputs, w_depth, w_point, name, is_training, strides=None):

        if not isinstance(w_depth, list) or not isinstance(w_point, list):
            raise ValueError("weight should be list")

        if strides is None:
            strides = [1, 1, 1, 1]
        elif not isinstance(strides, list):
            raise ValueError("strides should be list")

        with tf.variable_scope(name):
            w_depth = create_weight("w_depth", w_depth)
            w_point = create_weight("w_point", w_point)
            out = tf.nn.separable_conv2d(inputs, w_depth, w_point, strides, "SAME", data_format=self.data_format)
            out = batch_norm(out, is_training, data_format=self.data_format)
        return out
Exemplo n.º 11
0
    def _conv_ops(self, inputs, weight, name, is_training, strides=None):

        if not isinstance(weight, list):
            raise ValueError("weight should be list")

        if strides is None:
            strides = [1, 1, 1, 1]
        elif not isinstance(strides, list):
            raise ValueError("strides should be list")

        with tf.variable_scope(name):
            w = create_weight("w", weight)
            out = tf.nn.relu(inputs)
            out = tf.nn.conv2d(out, w, strides, "SAME", data_format=self.data_format)
            out = batch_norm(out, is_training, data_format=self.data_format)
        return out
Exemplo n.º 12
0
    def _fixed_layer(self, layer_id, prev_layers, start_idx, out_filters, is_training, mask_idx):
        """
        Args:
          layer_id: current layer
          prev_layers: cache of previous layers. for skip connections
          start_idx: where to start looking at. technically, we can infer this
            from layer_id, but why bother...
          is_training: for batch_norm
        """

        inputs = prev_layers[-1]
        inp_c = self._get_C(inputs)
        count = self.sample_arc[start_idx]
        shape = self.sample_shape[mask_idx]

        mask = False
        if count in [0, 1, 2, 3]:

            mask = True
            out = self._conv_ops(inputs, [1, 1, inp_c, out_filters], "conv_1x1", is_training)
            # conv 3*3
            if count == 0:
                with tf.variable_scope("conv_{0}x{0}".format(3)):
                    out = tf.nn.relu(out)
                    out = conv_3_3_weight(out, out_filters, self.data_format, shape)
                    out = batch_norm(out, is_training, data_format=self.data_format)

            # conv sep 3*3
            elif count == 1:
                with tf.variable_scope("conv_{0}x{0}".format(3)):
                    out = tf.nn.relu(out)
                    out = conv_3_3_weight(out, out_filters, self.data_format, shape)
                    out = batch_norm(out, is_training, data_format=self.data_format)

            elif count == 2:
                with tf.variable_scope("conv_{0}x{0}".format(5)):
                    out = tf.nn.relu(out)
                    out = conv_5_5_weight(out, out_filters, self.data_format, shape)
                    out = batch_norm(out, is_training, data_format=self.data_format)

            elif count == 3:
                with tf.variable_scope("conv_{0}x{0}".format(5)):
                    out = tf.nn.relu(out)
                    out = conv_5_5_weight(out, out_filters, self.data_format, shape)
                    out = batch_norm(out, is_training, data_format=self.data_format)

        elif count == 4:
            out = tf.layers.average_pooling2d(
                inputs, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
        elif count == 5:
            out = tf.layers.max_pooling2d(
                inputs, [3, 3], [1, 1], "SAME", data_format=self.actual_data_format)
        else:
            raise ValueError("Unknown operation number '{0}'".format(count))

        if layer_id > 0:
            skip_start = start_idx + 1
            skip = self.sample_arc[skip_start: skip_start + layer_id]
            total_skip_channels = np.sum(skip) + 1

            res_layers = []
            for i in range(layer_id):
                if skip[i] == 1:
                    res_layers.append(prev_layers[i])
            prev = res_layers + [out]

            if self.data_format == "NHWC":
                prev = tf.concat(prev, axis=3)
            elif self.data_format == "NCHW":
                prev = tf.concat(prev, axis=1)

            out = prev
            with tf.variable_scope("skip"):
                w = create_weight(
                    "w", [1, 1, total_skip_channels * out_filters, out_filters])
                out = tf.nn.relu(out)
                out = tf.nn.conv2d(
                    out, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
                out = batch_norm(out, is_training, data_format=self.data_format)

        return out, mask
Exemplo n.º 13
0
    def _enas_layer(self, layer_id, prev_layers, start_idx, out_filters, is_training):
        """
        Args:
          layer_id: current layer
          prev_layers: cache of previous layers. for skip connections
          start_idx: where to start looking at. technically, we can infer this
            from layer_id, but why bother...
          is_training: for batch_norm
        """

        inputs = prev_layers[-1]
        inp_h = self._get_H(inputs)
        inp_w = self._get_W(inputs)

        count = self.sample_arc[start_idx]
        branches = {}
        with tf.variable_scope("branch_0"):
            y = self._conv_branch(inputs, 3, is_training, out_filters, out_filters, start_idx=0)
            branches[tf.equal(count, 0)] = lambda: y
        with tf.variable_scope("branch_1"):
            y = self._sep_conv_branch(inputs, 3, is_training, out_filters, out_filters, start_idx=0)
            branches[tf.equal(count, 1)] = lambda: y
        with tf.variable_scope("branch_2"):
            y = self._conv_branch(inputs, 5, is_training, out_filters, out_filters, start_idx=0)
            branches[tf.equal(count, 2)] = lambda: y
        with tf.variable_scope("branch_3"):
            y = self._sep_conv_branch(inputs, 5, is_training, out_filters, out_filters, start_idx=0)
            branches[tf.equal(count, 3)] = lambda: y
        if self.num_branches >= 5:
            with tf.variable_scope("branch_4"):
                y = self._pool_branch(inputs, is_training, out_filters, "avg",
                                      start_idx=0)
            branches[tf.equal(count, 4)] = lambda: y
        if self.num_branches >= 6:
            with tf.variable_scope("branch_5"):
                y = self._pool_branch(inputs, is_training, out_filters, "max",
                                      start_idx=0)
            branches[tf.equal(count, 5)] = lambda: y
        out = tf.case(branches, default=lambda: tf.constant(0,
                                                            dtype=tf.float32,
                                                            shape=[self.batch_size, out_filters, inp_h, inp_w]),
                      exclusive=True)

        if self.data_format == "NHWC":
            out.set_shape([None, inp_h, inp_w, out_filters])
        elif self.data_format == "NCHW":
            out.set_shape([None, out_filters, inp_h, inp_w])

        if layer_id > 0:
            skip_start = start_idx + 1
            skip = self.sample_arc[skip_start: skip_start + layer_id]
            with tf.variable_scope("skip"):
                res_layers = []
                for i in range(layer_id):
                    res_layers.append(tf.cond(tf.equal(skip[i], 1),
                                              lambda: prev_layers[i],
                                              lambda: tf.zeros_like(prev_layers[i])))
                res_layers.append(out)
                out = tf.add_n(res_layers)
                out = batch_norm(out, is_training, data_format=self.data_format)

        return out, False
Exemplo n.º 14
0
  def _enas_layer(self, layer_id, prev_layers, arc, out_filters):
    """
    Args:
      layer_id: current layer
      prev_layers: cache of previous layers. for skip connections
      start_idx: where to start looking at. technically, we can infer this
        from layer_id, but why bother...
    """

    assert len(prev_layers) == 2, "need exactly 2 inputs"
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters, is_training=True)
    used = []
    for cell_id in range(self.num_cells):
      prev_layers = tf.stack(layers, axis=0)
      with tf.variable_scope("cell_{0}".format(cell_id)):
        with tf.variable_scope("x"):
          x_id = arc[4 * cell_id]
          x_op = arc[4 * cell_id + 1]
          x = prev_layers[x_id, :, :, :, :]
          x = self._enas_cell(x, cell_id, x_id, x_op, out_filters)
          x_used = tf.one_hot(x_id, depth=self.num_cells + 2, dtype=tf.int32)

        with tf.variable_scope("y"):
          y_id = arc[4 * cell_id + 2]
          y_op = arc[4 * cell_id + 3]
          y = prev_layers[y_id, :, :, :, :]
          y = self._enas_cell(y, cell_id, y_id, y_op, out_filters)
          y_used = tf.one_hot(y_id, depth=self.num_cells + 2, dtype=tf.int32)

        out = x + y
        used.extend([x_used, y_used])
        layers.append(out)

    used = tf.add_n(used)
    indices = tf.where(tf.equal(used, 0))
    indices = tf.to_int32(indices)
    indices = tf.reshape(indices, [-1])
    num_outs = tf.size(indices)
    out = tf.stack(layers, axis=0)
    out = tf.gather(out, indices, axis=0)

    inp = prev_layers[0]
    if self.data_format == "NHWC":
      N = tf.shape(inp)[0]
      H = tf.shape(inp)[1]
      W = tf.shape(inp)[2]
      C = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 2, 3, 0, 4])
      out = tf.reshape(out, [N, H, W, num_outs * out_filters])
    elif self.data_format == "NCHW":
      N = tf.shape(inp)[0]
      C = tf.shape(inp)[1]
      H = tf.shape(inp)[2]
      W = tf.shape(inp)[3]
      out = tf.transpose(out, [1, 0, 2, 3, 4])
      out = tf.reshape(out, [N, num_outs * out_filters, H, W])
    else:
      raise ValueError("Unknown data_format '{0}'".format(self.data_format))

    with tf.variable_scope("final_conv"):
      w = create_weight("w", [self.num_cells + 2, out_filters * out_filters])
      w = tf.gather(w, indices, axis=0)
      w = tf.reshape(w, [1, 1, num_outs * out_filters, out_filters])
      out = tf.nn.relu(out)
      out = tf.nn.conv2d(out, w, strides=[1, 1, 1, 1], padding="SAME",
                         data_format=self.data_format)
      out = batch_norm(out, is_training=True, data_format=self.data_format)

    out = tf.reshape(out, tf.shape(prev_layers[0]))

    return out
Exemplo n.º 15
0
  def _fixed_layer(self, layer_id, prev_layers, arc, out_filters, stride,
                   is_training, normal_or_reduction_cell="normal"):
    """
    Args:
      prev_layers: cache of previous layers. for skip connections
      is_training: for batch_norm
    """

    assert len(prev_layers) == 2
    layers = [prev_layers[0], prev_layers[1]]
    layers = self._maybe_calibrate_size(layers, out_filters,
                                        is_training=is_training)

    with tf.variable_scope("layer_base"):
      x = layers[1]
      inp_c = self._get_C(x)
      w = create_weight("w", [1, 1, inp_c, out_filters])
      x = tf.nn.relu(x)
      x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                       data_format=self.data_format)
      x = batch_norm(x, is_training, data_format=self.data_format)
      layers[1] = x

    used = np.zeros([self.num_cells + 2], dtype=np.int32)
    f_sizes = [3, 5]
    for cell_id in range(self.num_cells):
      with tf.variable_scope("cell_{}".format(cell_id)):
        x_id = arc[4 * cell_id]
        used[x_id] += 1
        x_op = arc[4 * cell_id + 1]
        x = layers[x_id]
        x_stride = stride if x_id in [0, 1] else 1
        with tf.variable_scope("x_conv"):
          if x_op in [0, 1]:
            f_size = f_sizes[x_op]
            x = self._fixed_conv(x, f_size, out_filters, x_stride, is_training)
          elif x_op in [2, 3]:
            inp_c = self._get_C(x)
            if x_op == 2:
              x = tf.layers.average_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              x = tf.layers.max_pooling2d(
                x, [3, 3], [x_stride, x_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(x)
            if x_stride > 1:
              assert x_stride == 2
              x = self._factorized_reduction(x, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              x = tf.nn.relu(x)
              x = tf.nn.conv2d(x, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
              x = batch_norm(x, is_training, data_format=self.data_format)
          if (x_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            x = self._apply_drop_path(x, layer_id)

        y_id = arc[4 * cell_id + 2]
        used[y_id] += 1
        y_op = arc[4 * cell_id + 3]
        y = layers[y_id]
        y_stride = stride if y_id in [0, 1] else 1
        with tf.variable_scope("y_conv"):
          if y_op in [0, 1]:
            f_size = f_sizes[y_op]
            y = self._fixed_conv(y, f_size, out_filters, y_stride, is_training)
          elif y_op in [2, 3]:
            inp_c = self._get_C(y)
            if y_op == 2:
              y = tf.layers.average_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            else:
              y = tf.layers.max_pooling2d(
                y, [3, 3], [y_stride, y_stride], "SAME",
                data_format=self.actual_data_format)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)
          else:
            inp_c = self._get_C(y)
            if y_stride > 1:
              assert y_stride == 2
              y = self._factorized_reduction(y, out_filters, 2, is_training)
            if inp_c != out_filters:
              w = create_weight("w", [1, 1, inp_c, out_filters])
              y = tf.nn.relu(y)
              y = tf.nn.conv2d(y, w, [1, 1, 1, 1], "SAME",
                               data_format=self.data_format)
              y = batch_norm(y, is_training, data_format=self.data_format)

          if (y_op in [0, 1, 2, 3] and
              self.drop_path_keep_prob is not None and
              is_training):
            y = self._apply_drop_path(y, layer_id)

        out = x + y
        layers.append(out)
    out = self._fixed_combine(layers, used, out_filters, is_training,
                              normal_or_reduction_cell)

    return out
Exemplo n.º 16
0
  def _model(self, images, is_training, reuse=False):
    """Compute the logits given the images."""

    if self.fixed_arc is None:
      is_training = True

    with tf.variable_scope(self.name, reuse=reuse):
      # the first two inputs
      with tf.variable_scope("stem_conv"):
        w = create_weight("w", [3, 3, 3, self.out_filters * 3])
        x = tf.nn.conv2d(
          images, w, [1, 1, 1, 1], "SAME", data_format=self.data_format)
        x = batch_norm(x, is_training, data_format=self.data_format)
      if self.data_format == "NHCW":
        split_axis = 3
      elif self.data_format == "NCHW":
        split_axis = 1
      else:
        raise ValueError("Unknown data_format '{0}'".format(self.data_format))
      layers = [x, x]

      # building layers in the micro space
      out_filters = self.out_filters
      for layer_id in range(self.num_layers + 2):
        with tf.variable_scope("layer_{0}".format(layer_id)):
          if layer_id not in self.pool_layers:
            if self.fixed_arc is None:
              x = self._enas_layer(
                layer_id, layers, self.normal_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.normal_arc, out_filters, 1, is_training,
                normal_or_reduction_cell="normal")
          else:
            out_filters *= 2
            if self.fixed_arc is None:
              x = self._factorized_reduction(x, out_filters, 2, is_training)
              layers = [layers[-1], x]
              x = self._enas_layer(
                layer_id, layers, self.reduce_arc, out_filters)
            else:
              x = self._fixed_layer(
                layer_id, layers, self.reduce_arc, out_filters, 2, is_training,
                normal_or_reduction_cell="reduction")
          print("Layer {0:>2d}: {1}".format(layer_id, x))
          layers = [layers[-1], x]

        # auxiliary heads
        self.num_aux_vars = 0
        if (self.use_aux_heads and
            layer_id in self.aux_head_indices
            and is_training):
          print("Using aux_head at layer {0}".format(layer_id))
          with tf.variable_scope("aux_head"):
            aux_logits = tf.nn.relu(x)
            aux_logits = tf.layers.average_pooling2d(
              aux_logits, [5, 5], [3, 3], "VALID",
              data_format=self.actual_data_format)
            with tf.variable_scope("proj"):
              inp_c = self._get_C(aux_logits)
              w = create_weight("w", [1, 1, inp_c, 128])
              aux_logits = tf.nn.conv2d(aux_logits, w, [1, 1, 1, 1], "SAME",
                                        data_format=self.data_format)
              aux_logits = batch_norm(aux_logits, is_training=True,
                                      data_format=self.data_format)
              aux_logits = tf.nn.relu(aux_logits)

            with tf.variable_scope("avg_pool"):
              inp_c = self._get_C(aux_logits)
              hw = self._get_HW(aux_logits)
              w = create_weight("w", [hw, hw, inp_c, 768])
              aux_logits = tf.nn.conv2d(aux_logits, w, [1, 1, 1, 1], "SAME",
                                        data_format=self.data_format)
              aux_logits = batch_norm(aux_logits, is_training=True,
                                      data_format=self.data_format)
              aux_logits = tf.nn.relu(aux_logits)

            with tf.variable_scope("fc"):
              aux_logits = global_avg_pool(aux_logits,
                                           data_format=self.data_format)
              inp_c = aux_logits.get_shape()[1].value
              w = create_weight("w", [inp_c, 10])
              aux_logits = tf.matmul(aux_logits, w)
              self.aux_logits = aux_logits

          aux_head_variables = [
            var for var in tf.trainable_variables() if (
              var.name.startswith(self.name) and "aux_head" in var.name)]
          self.num_aux_vars = count_model_params(aux_head_variables)
          print("Aux head uses {0} params".format(self.num_aux_vars))

      x = tf.nn.relu(x)
      x = global_avg_pool(x, data_format=self.data_format)
      if is_training and self.keep_prob is not None and self.keep_prob < 1.0:
        x = tf.nn.dropout(x, self.keep_prob)
      with tf.variable_scope("fc"):
        inp_c = self._get_C(x)
        w = create_weight("w", [inp_c, 10])
        x = tf.matmul(x, w)
    return x