Exemplo n.º 1
0
    def forward(self, x, centre=None, other=None, penultimate=False):
        x = self.features(x)
        x = F.interpolate(x, size=self.input_sz, mode="bilinear")

        if not penultimate:
            assert (centre is not None) and (other is not None)
            patches1, patches2 = get_patches(x, centre, other, self.patch_side)
            adjacency = self.isola_head(patches1, patches2)
            x = torch.sigmoid(adjacency)

        return x
    def forward(self, x, centre=None, other=None, penultimate=False):
        x = self.features(x)
        x = F.interpolate(x, size=self.input_sz, mode="bilinear")

        if not penultimate:
            assert (centre is not None) and (other is not None)
            patches1, patches2 = get_patches(x, centre, other, self.patch_side)

            # predicted position distribution, no softmax - using
            # torch.CrossEntropyLoss
            # shape: bn, 9
            x = self.doersch_head(patches1, patches2)

        return x