Exemplo n.º 1
0
def main(cl_arguments):
    ''' Run REPL for a CoLA model '''

    # Arguments handling #
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)
    check_arg_name(args)
    assert args.target_tasks == "cola", \
        "Currently only supporting CoLA. ({})".format(args.target_tasks)

    if args.cuda >= 0:
        try:
            if not torch.cuda.is_available():
                raise EnvironmentError("CUDA is not available, or not detected"
                                       " by PyTorch.")
            log.info("Using GPU %d", args.cuda)
            torch.cuda.set_device(args.cuda)
        except Exception:
            log.warning("GPU access failed. You might be using a CPU-only"
                        " installation of PyTorch. Falling back to CPU.")
            args.cuda = -1

    # Prepare data #
    _, target_tasks, vocab, word_embs = build_tasks(args)
    tasks = sorted(set(target_tasks), key=lambda x: x.name)

    # Build or load model #
    model = build_model(args, vocab, word_embs, tasks)
    log.info("Loading existing model from %s...", cl_args.model_file_path)
    load_model_state(model,
                     cl_args.model_file_path,
                     args.cuda, [],
                     strict=False)

    # Inference Setup #
    model.eval()
    vocab = Vocabulary.from_files(os.path.join(args.exp_dir, 'vocab'))
    indexers = build_indexers(args)
    task = take_one(tasks)

    # Run Inference #
    if cl_args.inference_mode == "repl":
        assert cl_args.input_path is None
        assert cl_args.output_path is None
        print("Running REPL for task: {}".format(task.name))
        run_repl(model, vocab, indexers, task, args)
    elif cl_args.inference_mode == "corpus":
        run_corpus_inference(
            model,
            vocab,
            indexers,
            task,
            args,
            cl_args.input_path,
            cl_args.input_format,
            cl_args.output_path,
            cl_args.eval_output_path,
        )
    else:
        raise KeyError(cl_args.inference_mode)
Exemplo n.º 2
0
def setup_target_task_training(args, target_tasks, model, strict):
    """
    Saves model states from pretraining if applicable, and
    loads the correct model state for the target task training
    stage.

    Parameters
    ----------------
    args: Params object
    target_tasks: list of target Task objects
    mdoel: a MultiTaskModel object

    Returns
    ----------------
    task_names_to_avoid_loading: list of strings, if we don't allow for
    use of pretrained target specific module parameters, then this list will
    consist of all the task names so that we avoid loading the
    pretrained parameters. Else, it will be an empty list.

    """
    if args.do_target_task_training and not args.allow_reuse_of_pretraining_parameters:
        # If we're training models for evaluation, which is always done from scratch with a fresh
        # optimizer, we shouldn't load parameters for those models.
        # Usually, there won't be trained parameters to skip, but this can happen if a run is killed
        # during the do_target_task_training phase.
        task_names_to_avoid_loading = [task.name for task in target_tasks]
    else:
        task_names_to_avoid_loading = []

    if not args.load_target_train_checkpoint == "none":
        # This is to load a particular target train checkpoint.
        log.info("Loading existing model from %s...",
                 args.load_target_train_checkpoint)
        load_model_state(model,
                         args.load_target_train_checkpoint,
                         args.cuda,
                         task_names_to_avoid_loading,
                         strict=strict)
    else:
        # Look for target train checkpoints (available only if we're restoring from a run that already
        # finished), then look for training checkpoints.

        best_path = get_best_checkpoint_path(args.run_dir)
        if best_path:
            load_model_state(model,
                             best_path,
                             args.cuda,
                             task_names_to_avoid_loading,
                             strict=strict)
        else:
            assert_for_log(args.allow_untrained_encoder_parameters,
                           "No best checkpoint found to evaluate.")

            if args.transfer_paradigm == "finetune":
                # Save model so we have a checkpoint to go back to after each task-specific finetune.
                model_state = model.state_dict()
                model_path = os.path.join(
                    args.run_dir, "model_state_untrained_pre_target_train.th")
                torch.save(model_state, model_path)

            log.warning("Evaluating untrained encoder parameters!")
    return task_names_to_avoid_loading
Exemplo n.º 3
0
def main(cl_arguments):
    ''' Train a model for multitask-training.'''
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)
    # Check for deprecated arg names
    check_arg_name(args)
    args, seed = initial_setup(args, cl_args)
    # Load tasks
    log.info("Loading tasks...")
    start_time = time.time()
    pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args)
    tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name)
    log.info('\tFinished loading tasks in %.3fs', time.time() - start_time)
    log.info('\t Tasks: {}'.format([task.name for task in tasks]))

    # Build model
    log.info('Building model...')
    start_time = time.time()
    model = build_model(args, vocab, word_embs, tasks)
    log.info('\tFinished building model in %.3fs', time.time() - start_time)

    # Start Tensorboard if requested
    if cl_args.tensorboard:
        tb_logdir = os.path.join(args.run_dir, "tensorboard")
        _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port)

    check_configurations(args, pretrain_tasks, target_tasks)

    if args.do_pretrain:
        # Train on pretrain tasks
        log.info("Training...")
        stop_metric = pretrain_tasks[0].val_metric if len(
            pretrain_tasks) == 1 else 'macro_avg'
        should_decrease = pretrain_tasks[0].val_metric_decreases if len(
            pretrain_tasks) == 1 else False
        trainer, _, opt_params, schd_params = build_trainer(args, [],
                                                            model,
                                                            args.run_dir,
                                                            should_decrease,
                                                            phase="pretrain")
        to_train = [(n, p) for n, p in model.named_parameters()
                    if p.requires_grad]
        _ = trainer.train(pretrain_tasks,
                          stop_metric,
                          args.batch_size,
                          args.weighting_method,
                          args.scaling_method,
                          to_train,
                          opt_params,
                          schd_params,
                          args.shared_optimizer,
                          args.load_model,
                          phase="pretrain")

    # For checkpointing logic
    if not args.do_target_task_training:
        log.info("In strict mode because do_target_task_training is off. "
                 "Will crash if any tasks are missing from the checkpoint.")
        strict = True
    else:
        strict = False

    if args.do_target_task_training:
        # Train on target tasks
        task_names_to_avoid_loading = setup_target_task_training(
            args, target_tasks, model, strict)
        if args.transfer_paradigm == "frozen":
            # might be empty if elmo = 0. scalar_mix_0 should always be
            # pretrain scalars
            elmo_scalars = [(n, p) for n, p in model.named_parameters()
                            if "scalar_mix" in n and "scalar_mix_0" not in n]
            # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero
            # length.
            assert_for_log(
                not elmo_scalars or args.sep_embs_for_skip,
                "Error: ELMo scalars loaded and will be updated in do_target_task_training but "
                "they should not be updated! Check sep_embs_for_skip flag or make an issue."
            )
        for task in target_tasks:
            # Skip mnli-diagnostic
            # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task"
            # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and
            # "is_probing_task is global flag specific to a run, not to a task.
            if task.name == 'mnli-diagnostic':
                continue

            if args.transfer_paradigm == "finetune":
                # Train both the task specific models as well as sentence
                # encoder.
                to_train = [(n, p) for n, p in model.named_parameters()
                            if p.requires_grad]
            else:  # args.transfer_paradigm == "frozen":
                # Only train task-specific module
                pred_module = getattr(model, "%s_mdl" % task.name)
                to_train = [(n, p) for n, p in pred_module.named_parameters()
                            if p.requires_grad]
                to_train += elmo_scalars

            trainer, _, opt_params, schd_params = build_trainer(
                args, [task.name, 'target_train'],
                model,
                args.run_dir,
                task.val_metric_decreases,
                phase="target_train")
            _ = trainer.train(tasks=[task],
                              stop_metric=task.val_metric,
                              batch_size=args.batch_size,
                              weighting_method=args.weighting_method,
                              scaling_method=args.scaling_method,
                              train_params=to_train,
                              optimizer_params=opt_params,
                              scheduler_params=schd_params,
                              shared_optimizer=args.shared_optimizer,
                              load_model=False,
                              phase="target_train")

            # Now that we've trained a model, revert to the normal checkpoint
            # logic for this task.
            if task.name in task_names_to_avoid_loading:
                task_names_to_avoid_loading.remove(task.name)

            # The best checkpoint will accumulate the best parameters for each
            # task.
            layer_path = os.path.join(args.run_dir,
                                      "model_state_target_train_best.th")

            if args.transfer_paradigm == "finetune":
                # Save this fine-tune model with a task specific name.
                finetune_path = os.path.join(
                    args.run_dir, "model_state_%s_best.th" % task.name)
                os.rename(layer_path, finetune_path)

                # Reload the original best model from before target-task
                # training.
                pre_finetune_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model,
                                 pre_finetune_path,
                                 args.cuda,
                                 skip_task_models=[],
                                 strict=strict)
            else:  # args.transfer_paradigm == "frozen":
                # Load the current overall best model.
                # Save the best checkpoint from that target task training to be
                # specific to that target task.
                load_model_state(model,
                                 layer_path,
                                 args.cuda,
                                 strict=strict,
                                 skip_task_models=task_names_to_avoid_loading)

    if args.do_full_eval:
        # Evaluate
        log.info("Evaluating...")
        splits_to_write = evaluate.parse_write_preds_arg(args.write_preds)
        if args.transfer_paradigm == "finetune":
            for task in target_tasks:
                if task.name == 'mnli-diagnostic':
                    # we'll load mnli-diagnostic during mnli
                    continue
                # Special checkpointing logic here since we train the sentence encoder
                # and have a best set of sent encoder model weights per task.
                finetune_path = os.path.join(
                    args.run_dir, "model_state_%s_best.th" % task.name)
                if os.path.exists(finetune_path):
                    ckpt_path = finetune_path
                else:
                    ckpt_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model,
                                 ckpt_path,
                                 args.cuda,
                                 skip_task_models=[],
                                 strict=strict)

                tasks = [task]
                if task.name == 'mnli':
                    tasks += [
                        t for t in target_tasks if t.name == 'mnli-diagnostic'
                    ]
                evaluate_and_write(args, model, tasks, splits_to_write)

        elif args.transfer_paradigm == "frozen":
            # Don't do any special checkpointing logic here
            # since model already has all the trained task specific modules.
            evaluate_and_write(args, model, target_tasks, splits_to_write)

    log.info("Done!")
Exemplo n.º 4
0
def main(cl_arguments):
    ''' Train or load a model. Evaluate on some tasks. '''
    cl_args = handle_arguments(cl_arguments)
    args = config.params_from_file(cl_args.config_file, cl_args.overrides)

    # Raise error if obsolete arg names are present
    check_arg_name(args)

    # Logistics #
    maybe_make_dir(args.project_dir)  # e.g. /nfs/jsalt/exp/$HOSTNAME
    maybe_make_dir(args.exp_dir)      # e.g. <project_dir>/jiant-demo
    maybe_make_dir(args.run_dir)      # e.g. <project_dir>/jiant-demo/sst
    log.getLogger().addHandler(log.FileHandler(args.local_log_path))

    if cl_args.remote_log:
        from src.utils import gcp
        gcp.configure_remote_logging(args.remote_log_name)

    if cl_args.notify:
        from src.utils import emails
        global EMAIL_NOTIFIER
        log.info("Registering email notifier for %s", cl_args.notify)
        EMAIL_NOTIFIER = emails.get_notifier(cl_args.notify, args)

    if EMAIL_NOTIFIER:
        EMAIL_NOTIFIER(body="Starting run.", prefix="")

    _try_logging_git_info()

    log.info("Parsed args: \n%s", args)

    config_file = os.path.join(args.run_dir, "params.conf")
    config.write_params(args, config_file)
    log.info("Saved config to %s", config_file)

    seed = random.randint(1, 10000) if args.random_seed < 0 else args.random_seed
    random.seed(seed)
    torch.manual_seed(seed)
    log.info("Using random seed %d", seed)
    if args.cuda >= 0:
        try:
            if not torch.cuda.is_available():
                raise EnvironmentError("CUDA is not available, or not detected"
                                       " by PyTorch.")
            log.info("Using GPU %d", args.cuda)
            torch.cuda.set_device(args.cuda)
            torch.cuda.manual_seed_all(seed)
        except Exception:
            log.warning(
                "GPU access failed. You might be using a CPU-only installation of PyTorch. Falling back to CPU.")
            args.cuda = -1

    # Prepare data #
    log.info("Loading tasks...")
    start_time = time.time()
    pretrain_tasks, target_tasks, vocab, word_embs = build_tasks(args)
    if any([t.val_metric_decreases for t in pretrain_tasks]) and any(
            [not t.val_metric_decreases for t in pretrain_tasks]):
        log.warn("\tMixing training tasks with increasing and decreasing val metrics!")
    tasks = sorted(set(pretrain_tasks + target_tasks), key=lambda x: x.name)
    log.info('\tFinished loading tasks in %.3fs', time.time() - start_time)
    log.info('\t Tasks: {}'.format([task.name for task in tasks]))

    # Build model #
    log.info('Building model...')
    start_time = time.time()
    model = build_model(args, vocab, word_embs, tasks)
    log.info('\tFinished building model in %.3fs', time.time() - start_time)

    # Check that necessary parameters are set for each step. Exit with error if not.
    steps_log = []

    if not args.load_eval_checkpoint == 'none':
        assert_for_log(os.path.exists(args.load_eval_checkpoint),
                       "Error: Attempting to load model from non-existent path: [%s]" %
                       args.load_eval_checkpoint)
        assert_for_log(
            not args.do_pretrain,
            "Error: Attempting to train a model and then replace that model with one from a checkpoint.")
        steps_log.append("Loading model from path: %s" % args.load_eval_checkpoint)

    assert_for_log(args.transfer_paradigm in ["finetune", "frozen"],
                   "Transfer paradigm %s not supported!" % args.transfer_paradigm)

    if args.do_pretrain:
        assert_for_log(args.pretrain_tasks != "none",
                       "Error: Must specify at least on training task: [%s]" % args.pretrain_tasks)
        assert_for_log(
            args.val_interval %
            args.bpp_base == 0, "Error: val_interval [%d] must be divisible by bpp_base [%d]" %
            (args.val_interval, args.bpp_base))
        steps_log.append("Training model on tasks: %s" % args.pretrain_tasks)

    if args.do_target_task_training:
        steps_log.append("Re-training model for individual eval tasks")
        assert_for_log(
            args.eval_val_interval %
            args.bpp_base == 0, "Error: eval_val_interval [%d] must be divisible by bpp_base [%d]" %
            (args.eval_val_interval, args.bpp_base))
        assert_for_log(len(set(pretrain_tasks).intersection(target_tasks)) == 0
                       or args.allow_reuse_of_pretraining_parameters
                       or args.do_pretrain == 0,
                       "If you're pretraining on a task you plan to reuse as a target task, set\n"
                       "allow_reuse_of_pretraining_parameters = 1(risky), or train in two steps:\n"
                       "  train with do_pretrain = 1, do_target_task_training = 0, stop, and restart with\n"
                       "  do_pretrain = 0 and do_target_task_training = 1.")

    if args.do_full_eval:
        assert_for_log(args.target_tasks != "none",
                       "Error: Must specify at least one eval task: [%s]" % args.target_tasks)
        steps_log.append("Evaluating model on tasks: %s" % args.target_tasks)

    # Start Tensorboard if requested
    if cl_args.tensorboard:
        tb_logdir = os.path.join(args.run_dir, "tensorboard")
        _run_background_tensorboard(tb_logdir, cl_args.tensorboard_port)

    log.info("Will run the following steps:\n%s", '\n'.join(steps_log))
    if args.do_pretrain:
        # Train on train tasks #
        log.info("Training...")
        stop_metric = pretrain_tasks[0].val_metric if len(pretrain_tasks) == 1 else 'macro_avg'
        should_decrease = pretrain_tasks[0].val_metric_decreases if len(pretrain_tasks) == 1 else False
        trainer, _, opt_params, schd_params = build_trainer(args, [], model,
                                                            args.run_dir,
                                                            should_decrease)
        to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
        _ = trainer.train(pretrain_tasks, stop_metric,
                          args.batch_size, args.bpp_base,
                          args.weighting_method, args.scaling_method,
                          to_train, opt_params, schd_params,
                          args.shared_optimizer, args.load_model, phase="main")

    # Select model checkpoint from main training run to load
    if not args.do_target_task_training:
        log.info("In strict mode because do_target_task_training is off. "
                 "Will crash if any tasks are missing from the checkpoint.")
        strict = True
    else:
        strict = False

    if args.do_target_task_training and not args.allow_reuse_of_pretraining_parameters:
        # If we're training models for evaluation, which is always done from scratch with a fresh
        # optimizer, we shouldn't load parameters for those models.
        # Usually, there won't be trained parameters to skip, but this can happen if a run is killed
        # during the do_target_task_training phase.
        task_names_to_avoid_loading = [task.name for task in target_tasks]
    else:
        task_names_to_avoid_loading = []

    if not args.load_eval_checkpoint == "none":
        # This is to load a particular eval checkpoint.
        log.info("Loading existing model from %s...", args.load_eval_checkpoint)
        load_model_state(model, args.load_eval_checkpoint,
                         args.cuda, task_names_to_avoid_loading, strict=strict)
    else:
        # Look for eval checkpoints (available only if we're restoring from a run that already
        # finished), then look for training checkpoints.

        if args.transfer_paradigm == "finetune":
            # Save model so we have a checkpoint to go back to after each task-specific finetune.
            model_state = model.state_dict()
            model_path = os.path.join(args.run_dir, "model_state_untrained_prefinetune.th")
            torch.save(model_state, model_path)

        best_path = get_best_checkpoint_path(args.run_dir)
        if best_path:
            load_model_state(model, best_path, args.cuda, task_names_to_avoid_loading,
                             strict=strict)
        else:
            assert_for_log(args.allow_untrained_encoder_parameters,
                           "No best checkpoint found to evaluate.")
            log.warning("Evaluating untrained encoder parameters!")

    # Train just the task-specific components for eval tasks.
    if args.do_target_task_training:
        if args.transfer_paradigm == "frozen":
            # might be empty if elmo = 0. scalar_mix_0 should always be pretrain scalars
            elmo_scalars = [(n, p) for n, p in model.named_parameters() if
                            "scalar_mix" in n and "scalar_mix_0" not in n]
            # Fails when sep_embs_for_skip is 0 and elmo_scalars has nonzero length.
            assert_for_log(not elmo_scalars or args.sep_embs_for_skip,
                           "Error: ELMo scalars loaded and will be updated in do_target_task_training but "
                           "they should not be updated! Check sep_embs_for_skip flag or make an issue.")

        for task in target_tasks:
            # Skip mnli-diagnostic
            # This has to be handled differently than probing tasks because probing tasks require the "is_probing_task"
            # to be set to True. For mnli-diagnostic this flag will be False because it is part of GLUE and
            # "is_probing_task is global flag specific to a run, not to a task.
            if task.name == 'mnli-diagnostic':
                continue

            if args.transfer_paradigm == "finetune":
                # Train both the task specific models as well as sentence encoder.
                to_train = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
            else: # args.transfer_paradigm == "frozen":
                # Only train task-specific module.
                pred_module = getattr(model, "%s_mdl" % task.name)
                to_train = [(n, p) for n, p in pred_module.named_parameters() if p.requires_grad]
                to_train += elmo_scalars


            # Look for <task_name>_<param_name>, then eval_<param_name>
            trainer, _, opt_params, schd_params = build_trainer(args, [task.name, 'eval'],  model,
                                                                args.run_dir,
                                                                task.val_metric_decreases)
            _ = trainer.train(tasks=[task], stop_metric=task.val_metric, batch_size=args.batch_size,
                              n_batches_per_pass=1, weighting_method=args.weighting_method,
                              scaling_method=args.scaling_method, train_params=to_train,
                              optimizer_params=opt_params, scheduler_params=schd_params,
                              shared_optimizer=args.shared_optimizer, load_model=False, phase="eval")

            # Now that we've trained a model, revert to the normal checkpoint logic for this task.
            if task.name in task_names_to_avoid_loading:
                task_names_to_avoid_loading.remove(task.name)

            # The best checkpoint will accumulate the best parameters for each task.
            # This logic looks strange. We think it works.
            layer_path = os.path.join(args.run_dir, "model_state_eval_best.th")
            if args.transfer_paradigm == "finetune":
                # If we finetune,
                # Save this fine-tune model with a task specific name.
                finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name)
                os.rename(layer_path, finetune_path)

                # Reload the original best model from before target-task training.
                pre_finetune_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model, pre_finetune_path, args.cuda, skip_task_models=[], strict=strict)
            else: # args.transfer_paradigm == "frozen":
                # Load the current overall best model.
                # Save the best checkpoint from that target task training to be
                # specific to that target task.
                load_model_state(model, layer_path, args.cuda, strict=strict,
                                 skip_task_models=task_names_to_avoid_loading)

    if args.do_full_eval:
        # Evaluate #
        log.info("Evaluating...")
        splits_to_write = evaluate.parse_write_preds_arg(args.write_preds)
        if args.transfer_paradigm == "finetune":
            for task in target_tasks:
                if task.name == 'mnli-diagnostic': # we'll load mnli-diagnostic during mnli
                    continue

                finetune_path = os.path.join(args.run_dir, "model_state_%s_best.th" % task.name)
                if os.path.exists(finetune_path):
                    ckpt_path = finetune_path
                else:
                    ckpt_path = get_best_checkpoint_path(args.run_dir)
                load_model_state(model, ckpt_path, args.cuda, skip_task_models=[], strict=strict)

                tasks = [task]
                if task.name == 'mnli':
                    tasks += [t for t in target_tasks if t.name == 'mnli-diagnostic']
                evaluate_and_write(args, model, tasks, splits_to_write)

        elif args.transfer_paradigm == "frozen":
            evaluate_and_write(args, model, target_tasks, splits_to_write)

    log.info("Done!")