Exemplo n.º 1
0
def check_ply_files(subject):
    ply_subject = op.join(SUBJECTS_DIR, subject, 'surf', '{}.pial.ply')
    npz_subject = op.join(SUBJECTS_DIR, subject, 'surf', '{}.pial.npz')
    ply_blender = op.join(MMVT_DIR, subject, 'surf', '{}.pial.ply')
    npz_blender = op.join(MMVT_DIR, subject, 'surf', '{}.pial.npz')
    ok = True
    for hemi in HEMIS:
        # print('reading {}'.format(ply_subject.format(hemi)))
        verts1, faces1 = utils.read_ply_file(ply_subject.format(hemi), npz_subject.format(hemi))
        # print('reading {}'.format(ply_blender.format(hemi)))
        verts2, faces2 = utils.read_ply_file(ply_blender.format(hemi), npz_blender.format(hemi))
        print('vertices: ply: {}, blender: {}'.format(verts1.shape[0], verts2.shape[0]))
        print('faces: ply: {}, blender: {}'.format(faces1.shape[0], faces2.shape[0]))
        ok = ok and verts1.shape[0] == verts2.shape[0] and faces1.shape[0]==faces2.shape[0]
    return ok
Exemplo n.º 2
0
def check_ply_files(subject):
    ply_subject = op.join(SUBJECTS_DIR, subject, 'surf', '{}.pial.ply')
    npz_subject = op.join(SUBJECTS_DIR, subject, 'mmvt', '{}.pial.npz')
    ply_blender = op.join(MMVT_DIR, subject, '{}.pial.ply')
    npz_blender = op.join(MMVT_DIR, subject, '{}.pial.npz')
    ok = True
    for hemi in HEMIS:
        # print('reading {}'.format(ply_subject.format(hemi)))
        verts1, faces1 = utils.read_ply_file(ply_subject.format(hemi), npz_subject.format(hemi))
        # print('reading {}'.format(ply_blender.format(hemi)))
        verts2, faces2 = utils.read_ply_file(ply_blender.format(hemi), npz_blender.format(hemi))
        print('vertices: ply: {}, blender: {}'.format(verts1.shape[0], verts2.shape[0]))
        print('faces: ply: {}, blender: {}'.format(faces1.shape[0], faces2.shape[0]))
        ok = ok and verts1.shape[0] == verts2.shape[0] and faces1.shape[0]==faces2.shape[0]
    return ok
Exemplo n.º 3
0
def _save_fmri_colors(subject,
                      hemi,
                      x,
                      threshold,
                      output_file='',
                      verts=None,
                      surf_name='pial'):
    if verts is None:
        # Try to read the hemi ply file to check if the vertices number is correct
        ply_file = op.join(SUBJECTS_DIR, subject, 'surf',
                           '{}.{}.ply'.format(hemi, surf_name))
        if op.isfile(ply_file):
            verts, _ = utils.read_ply_file(ply_file)
            if len(x) != verts.shape[0]:
                raise Exception(
                    "fMRI contrast map and the hemi doens't have the same vertices number!"
                )
        else:
            print("No ply file, Can't check the vertices number")

    colors = utils.arr_to_colors_two_colors_maps(x,
                                                 cm_big='YlOrRd',
                                                 cm_small='PuBu',
                                                 threshold=threshold,
                                                 default_val=1)
    colors = np.hstack((x.reshape((len(x), 1)), colors))
    if output_file != '':
        op.join(BLENDER_ROOT_DIR, subject, 'fmri_{}.npy'.format(hemi))
    print('Saving {}'.format(output_file))
    np.save(output_file, colors)
Exemplo n.º 4
0
def init_clusters(subject, contrast_name, input_fol):
    input_fname = op.join(input_fol,
                          'fmri_{}_{}.npy'.format(contrast_name, '{hemi}'))
    contrast_per_hemi, verts_per_hemi = {}, {}
    for hemi in utils.HEMIS:
        fmri_fname = input_fname.format(hemi=hemi)
        if utils.file_type(input_fname) == 'npy':
            x = np.load(fmri_fname)
            contrast_per_hemi[hemi] = x[:, 0]
        else:
            # try nibabel
            x = nib.load(fmri_fname)
            contrast_per_hemi[hemi] = x.get_data().ravel()
        pial_npz_fname = op.join(BLENDER_ROOT_DIR, subject,
                                 '{}.pial.npz'.format(hemi))
        if not op.isfile(pial_npz_fname):
            print('No pial npz file (), creating one'.format(pial_npz_fname))
            verts, faces = utils.read_ply_file(
                op.join(BLENDER_ROOT_DIR, subject, '{}.pial.ply'.format(hemi)))
            np.savez(pial_npz_fname[:-4], verts=verts, faces=faces)
        d = np.load(pial_npz_fname)
        verts_per_hemi[hemi] = d['verts']
    connectivity_fname = op.join(BLENDER_ROOT_DIR, subject,
                                 'spatial_connectivity.pkl')
    if not op.isfile(connectivity_fname):
        from src.preproc import anatomy_preproc
        anatomy_preproc.create_spatial_connectivity(subject)
    connectivity_per_hemi = utils.load(connectivity_fname)
    return contrast_per_hemi, connectivity_per_hemi, verts_per_hemi
Exemplo n.º 5
0
def calc_faces_verts_dic(subject, atlas, overwrite=False):
    # hemis_plus = HEMIS + ['cortex']
    ply_files = [op.join(MMVT_DIR, subject, 'surf', '{}.pial.npz'.format(hemi)) for hemi in utils.HEMIS]
    out_files = [op.join(MMVT_DIR, subject, 'faces_verts_{}.npy'.format(hemi)) for hemi in utils.HEMIS]
    subcortical_plys = glob.glob(op.join(MMVT_DIR, subject, 'subcortical', '*.ply'))
    errors = {}
    if len(subcortical_plys) > 0:
        faces_verts_dic_fnames = [op.join(MMVT_DIR, subject, 'subcortical', '{}_faces_verts.npy'.format(
                utils.namebase(ply))) for ply in subcortical_plys]
        ply_files.extend(subcortical_plys)
        out_files.extend(faces_verts_dic_fnames)
    for hemi in utils.HEMIS:
        labels_plys = glob.glob(op.join(MMVT_DIR, subject, '{}.pial.{}'.format(atlas, hemi), '*.ply'))
        if len(labels_plys) > 0:
            faces_verts_dic_fnames = [op.join(MMVT_DIR, subject, '{}.pial.{}'.format(atlas, hemi), '{}_faces_verts.npy'.format(
                utils.namebase(ply))) for ply in labels_plys]
            ply_files.extend(labels_plys)
            out_files.extend(faces_verts_dic_fnames)

    for ply_file, out_file in zip(ply_files, out_files):
        if not overwrite and op.isfile(out_file):
            # print('{} already exist.'.format(out_file))
            continue
        # ply_file = op.join(SUBJECTS_DIR, subject,'surf', '{}.pial.ply'.format(hemi))
        # print('preparing a lookup table for {}'.format(ply_file))
        verts, faces = utils.read_ply_file(ply_file)
        errors = utils.calc_ply_faces_verts(verts, faces, out_file, overwrite, utils.namebase(ply_file), errors)
    if len(errors) > 0:
        for k, message in errors.items():
            print('{}: {}'.format(k, message))
    return len(errors) == 0
Exemplo n.º 6
0
def freesurfer_surface_to_blender_surface(subject, hemi='both', overwrite=False):
    for hemi in utils.get_hemis(hemi):
        utils.make_dir(op.join(MMVT_DIR, subject, 'surf'))
        for surf_type in ['inflated', 'pial']:
            surf_name = op.join(SUBJECTS_DIR, subject, 'surf', '{}.{}'.format(hemi, surf_type))
            surf_wavefront_name = '{}.asc'.format(surf_name)
            surf_new_name = '{}.srf'.format(surf_name)
            hemi_ply_fname = '{}.ply'.format(surf_name)
            mmvt_hemi_ply_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.ply'.format(hemi, surf_type))
            mmvt_hemi_npz_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.npz'.format(hemi, surf_type))
            if overwrite or not op.isfile(mmvt_hemi_ply_fname) and not op.isfile(mmvt_hemi_npz_fname):
                print('{} {}: convert srf to asc'.format(hemi, surf_type))
                utils.run_script('mris_convert {} {}'.format(surf_name, surf_wavefront_name))
                os.rename(surf_wavefront_name, surf_new_name)
                print('{} {}: convert asc to ply'.format(hemi, surf_type))
                convert_hemis_srf_to_ply(subject, hemi, surf_type)
                if op.isfile(mmvt_hemi_ply_fname):
                    os.remove(mmvt_hemi_ply_fname)
                shutil.copy(hemi_ply_fname, mmvt_hemi_ply_fname)
            ply_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.ply'.format(hemi, surf_type))
            if not op.isfile(mmvt_hemi_npz_fname):
                verts, faces = utils.read_ply_file(ply_fname)
                np.savez(mmvt_hemi_npz_fname, verts=verts, faces=faces)
    return utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.pial.ply')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.pial.npz')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.inflated.ply')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.inflated.npz'))
Exemplo n.º 7
0
def init_clusters(subject, contrast_name, input_fol):
    input_fname = op.join(input_fol, 'fmri_{}_{}.npy'.format(contrast_name, '{hemi}'))
    contrast_per_hemi, verts_per_hemi = {}, {}
    for hemi in utils.HEMIS:
        fmri_fname = input_fname.format(hemi=hemi)
        if utils.file_type(input_fname) == 'npy':
            x = np.load(fmri_fname)
            contrast_per_hemi[hemi] = x[:, 0]
        else:
            # try nibabel
            x = nib.load(fmri_fname)
            contrast_per_hemi[hemi] = x.get_data().ravel()
        pial_npz_fname = op.join(BLENDER_ROOT_DIR, subject, '{}.pial.npz'.format(hemi))
        if not op.isfile(pial_npz_fname):
            print('No pial npz file (), creating one'.format(pial_npz_fname))
            verts, faces = utils.read_ply_file(op.join(BLENDER_ROOT_DIR, subject, '{}.pial.ply'.format(hemi)))
            np.savez(pial_npz_fname[:-4], verts=verts, faces=faces)
        d = np.load(pial_npz_fname)
        verts_per_hemi[hemi] = d['verts']
    connectivity_fname = op.join(BLENDER_ROOT_DIR, subject, 'spatial_connectivity.pkl')
    if not op.isfile(connectivity_fname):
        from src.preproc import anatomy_preproc
        anatomy_preproc.create_spatial_connectivity(subject)
    connectivity_per_hemi = utils.load(connectivity_fname)
    return contrast_per_hemi, connectivity_per_hemi, verts_per_hemi
Exemplo n.º 8
0
def transform_to_another_subject(subject, region, subjects_dir):
    colin27_xfm = tu.get_talxfm('colin27', subjects_dir)
    xfm = tu.get_talxfm('colin27', subjects_dir)
    for hemi in ['lh', 'rh']:
        verts, faces = utils.read_ply_file(op.join(MMVT_DIR, 'colin27', 'subcortical', '{}_{}.ply'.format(region, hemi)))
        verts = tu.apply_trans(colin27_xfm, verts)
        verts = tu.apply_trans(np.linalg.inv(xfm), verts)
        utils.write_ply_file(verts, faces, op.join(MMVT_DIR, subject, 'subcortical', '{}_{}.ply'.format(region, hemi)))
Exemplo n.º 9
0
def transform_to_another_subject(subject, region, subjects_dir):
    colin27_xfm = tu.get_talxfm('colin27', subjects_dir)
    xfm = tu.get_talxfm('colin27', subjects_dir)
    for hemi in ['lh', 'rh']:
        verts, faces = utils.read_ply_file(op.join(MMVT_DIR, 'colin27', 'subcortical', '{}_{}.ply'.format(region, hemi)))
        verts = tu.apply_trans(colin27_xfm, verts)
        verts = tu.apply_trans(np.linalg.inv(xfm), verts)
        utils.write_ply_file(verts, faces, op.join(MMVT_DIR, subject, 'subcortical', '{}_{}.ply'.format(region, hemi)))
Exemplo n.º 10
0
def transform_to_another_subject(subject, region, subjects_dir):
    import mne.source_space
    import mne.transforms
    colin27_xfm = mne.source_space._read_talxfm('colin27', subjects_dir, 'nibabel')
    xfm = mne.source_space._read_talxfm(subject, subjects_dir, 'nibabel')
    for hemi in ['lh', 'rh']:
        verts, faces = utils.read_ply_file(op.join(MMVT_DIR, 'colin27', 'subcortical', '{}_{}.ply'.format(region, hemi)))
        verts = apply_trans(colin27_xfm['trans'], verts)
        verts = apply_trans(np.linalg.inv(xfm['trans']), verts)
        utils.write_ply_file(verts, faces, op.join(MMVT_DIR, subject, 'subcortical', '{}_{}.ply'.format(region, hemi)))
Exemplo n.º 11
0
def convert_and_rename_subcortical_files(subject, fol, new_fol, lookup):
    obj_files = glob.glob(op.join(fol, '*.srf'))
    utils.delete_folder_files(new_fol)
    for obj_file in obj_files:
        num = int(op.basename(obj_file)[:-4].split('_')[-1])
        new_name = lookup.get(num, '')
        if new_name != '':
            utils.srf2ply(obj_file, op.join(new_fol, '{}.ply'.format(new_name)))
            verts, faces = utils.read_ply_file(op.join(new_fol, '{}.ply'.format(new_name)))
            np.savez(op.join(new_fol, '{}.npz'.format(new_name)), verts=verts, faces=faces)
        copy_subcorticals_to_blender(new_fol, subject)
Exemplo n.º 12
0
def convert_and_rename_subcortical_files(subject, fol, new_fol, lookup, mmvt_subcorticals_fol_name='subcortical'):
    obj_files = glob.glob(op.join(fol, '*.srf'))
    utils.delete_folder_files(new_fol)
    for obj_file in obj_files:
        num = int(op.basename(obj_file)[:-4].split('_')[-1])
        new_name = lookup.get(num, '')
        if new_name != '':
            utils.srf2ply(obj_file, op.join(new_fol, '{}.ply'.format(new_name)))
            verts, faces = utils.read_ply_file(op.join(new_fol, '{}.ply'.format(new_name)))
            np.savez(op.join(new_fol, '{}.npz'.format(new_name)), verts=verts, faces=faces)
    copy_subcorticals_to_mmvt(new_fol, subject, mmvt_subcorticals_fol_name)
Exemplo n.º 13
0
def create_faces_verts(subject):
    skull_fol = op.join(MMVT_DIR, subject, 'skull')
    errors = {}
    for skull_surf in ['inner_skull', 'outer_skull']:
        ply_fname = op.join(skull_fol, '{}.ply'.format(skull_surf))
        verts, faces = utils.read_ply_file(ply_fname)
        faces_verts_fname = op.join(skull_fol,
                                    'faces_verts_{}.npy'.format(skull_surf))
        errors = utils.calc_ply_faces_verts(verts, faces,
                                            faces_verts_fname, False,
                                            utils.namebase(ply_fname), errors)
    if len(errors) > 0:
        for k, message in errors.items():
            print('{}: {}'.format(k, message))
Exemplo n.º 14
0
def convert_and_rename_subcortical_files(subject, fol, new_fol, lookup):
    obj_files = glob.glob(op.join(fol, '*.srf'))
    utils.delete_folder_files(new_fol)
    for obj_file in obj_files:
        num = int(op.basename(obj_file)[:-4].split('_')[-1])
        new_name = lookup.get(num, '')
        if new_name != '':
            utils.srf2ply(obj_file, op.join(new_fol, '{}.ply'.format(new_name)))
            verts, faces = utils.read_ply_file(op.join(new_fol, '{}.ply'.format(new_name)))
            np.savez(op.join(new_fol, '{}.npz'.format(new_name)), verts=verts, faces=faces)
    blender_fol = op.join(MMVT_DIR, subject, 'subcortical')
    if op.isdir(blender_fol):
        shutil.rmtree(blender_fol)
    shutil.copytree(new_fol, blender_fol)
Exemplo n.º 15
0
def calculate_subcorticals_activity(subject, volume_file, subcortical_codes_file='', aseg_stats_file_name='',
        method='max', k_points=100, do_plot=False):
    x = nib.load(volume_file)
    x_data = x.get_data()

    if do_plot:
        fig = plt.figure()
        ax = Axes3D(fig)

    sig_subs = []
    if subcortical_codes_file != '':
        subcortical_codes = np.genfromtxt(subcortical_codes_file, dtype=str, delimiter=',')
        seg_labels = map(str, subcortical_codes[:, 0])
    elif aseg_stats_file_name != '':
        aseg_stats = np.genfromtxt(aseg_stats_file_name, dtype=str, delimiter=',', skip_header=1)
        seg_labels = map(str, aseg_stats[:, 0])
    else:
        raise Exception('No segmentation file!')
    # Find the segmentation file
    aseg_fname = op.join(SUBJECTS_DIR, subject, 'mri', 'aseg.mgz')
    aseg = nib.load(aseg_fname)
    aseg_hdr = aseg.get_header()
    out_folder = op.join(SUBJECTS_DIR, subject, 'subcortical_fmri_activity')
    if not op.isdir(out_folder):
        os.mkdir(out_folder)
    sub_cortical_generator = utils.sub_cortical_voxels_generator(aseg, seg_labels, 5, False, FREE_SURFER_HOME)
    for pts, seg_name, seg_id in sub_cortical_generator:
        print(seg_name)
        verts, _ = utils.read_ply_file(op.join(SUBJECTS_DIR, subject, 'subcortical', '{}.ply'.format(seg_name)))
        vals = np.array([x_data[i, j, k] for i, j, k in pts])
        is_sig = np.max(np.abs(vals)) >= 2
        print(seg_name, seg_id, np.mean(vals), is_sig)
        pts = utils.transform_voxels_to_RAS(aseg_hdr, pts)
        # plot_points(verts,pts)
        verts_vals = calc_vert_vals(verts, pts, vals, method=method, k_points=k_points)
        print('verts vals: {}+-{}'.format(verts_vals.mean(), verts_vals.std()))
        if sum(abs(verts_vals)>2) > 0:
            sig_subs.append(seg_name)
        verts_colors = utils.arr_to_colors_two_colors_maps(verts_vals, threshold=2)
        verts_data = np.hstack((np.reshape(verts_vals, (len(verts_vals), 1)), verts_colors))
        np.save(op.join(out_folder, seg_name), verts_data)
        if do_plot:
            plot_points(verts, colors=verts_colors, fig_name=seg_name, ax=ax)
        # print(pts)
    utils.rmtree(op.join(BLENDER_ROOT_DIR, subject, 'subcortical_fmri_activity'))
    shutil.copytree(out_folder, op.join(BLENDER_ROOT_DIR, subject, 'subcortical_fmri_activity'))
    if do_plot:
        plt.savefig('/home/noam/subjects/mri/mg78/subcortical_fmri_activity/figures/brain.jpg')
        plt.show()
Exemplo n.º 16
0
def calc_faces_verts_dic(subject, atlas, overwrite=False):
    # hemis_plus = HEMIS + ['cortex']
    ply_files = [op.join(MMVT_DIR, subject, 'surf', '{}.pial.npz'.format(hemi)) for hemi in utils.HEMIS]
    out_files = [op.join(MMVT_DIR, subject, 'faces_verts_{}.npy'.format(hemi)) for hemi in utils.HEMIS]
    subcortical_plys = glob.glob(op.join(MMVT_DIR, subject, 'subcortical', '*.ply'))
    errors = []
    if len(subcortical_plys) > 0:
        faces_verts_dic_fnames = [op.join(MMVT_DIR, subject, 'subcortical', '{}_faces_verts.npy'.format(
                utils.namebase(ply))) for ply in subcortical_plys]
        ply_files.extend(subcortical_plys)
        out_files.extend(faces_verts_dic_fnames)
    for hemi in utils.HEMIS:
        labels_plys = glob.glob(op.join(MMVT_DIR, subject, '{}.pial.{}'.format(atlas, hemi), '*.ply'))
        if len(labels_plys) > 0:
            faces_verts_dic_fnames = [op.join(MMVT_DIR, subject, '{}.pial.{}'.format(atlas, hemi), '{}_faces_verts.npy'.format(
                utils.namebase(ply))) for ply in labels_plys]
            ply_files.extend(labels_plys)
            out_files.extend(faces_verts_dic_fnames)

    for ply_file, out_file in zip(ply_files, out_files):
        if not overwrite and op.isfile(out_file):
            # print('{} already exist.'.format(out_file))
            continue
        # ply_file = op.join(SUBJECTS_DIR, subject,'surf', '{}.pial.ply'.format(hemi))
        # print('preparing a lookup table for {}'.format(ply_file))
        verts, faces = utils.read_ply_file(ply_file)
        _faces = faces.ravel()
        print('{}: verts: {}, faces: {}, faces ravel: {}'.format(utils.namebase(ply_file), verts.shape[0], faces.shape[0], len(_faces)))
        faces_arg_sort = np.argsort(_faces)
        faces_sort = np.sort(_faces)
        faces_count = Counter(faces_sort)
        max_len = max([v for v in faces_count.values()])
        lookup = np.ones((verts.shape[0], max_len)) * -1
        diff = np.diff(faces_sort)
        n = 0
        for ind, (k, v) in enumerate(zip(faces_sort, faces_arg_sort)):
            lookup[k, n] = v
            n = 0 if ind < len(diff) and diff[ind] > 0 else n+1
        # print('writing {}'.format(out_file))
        np.save(out_file, lookup.astype(np.int))
        print('{} max lookup val: {}'.format(utils.namebase(ply_file), int(np.max(lookup))))
        if len(_faces) != int(np.max(lookup)) + 1:
            errors[utils.namebase(ply_file)] = 'Wrong values in lookup table! ' + \
                'faces ravel: {}, max looup val: {}'.format(len(_faces), int(np.max(lookup)))
    if len(errors) > 0:
        for k, message in errors.items():
            print('{}: {}'.format(k, message))
    return len(errors) == 0
Exemplo n.º 17
0
def _save_fmri_colors(subject, hemi, x, threshold, output_file='', verts=None, surf_name='pial'):
    if verts is None:
        # Try to read the hemi ply file to check if the vertices number is correct    
        ply_file = op.join(SUBJECTS_DIR, subject, 'surf', '{}.{}.ply'.format(hemi, surf_name))
        if op.isfile(ply_file):
            verts, _ = utils.read_ply_file(ply_file)
            if len(x) != verts.shape[0]:
                raise Exception("fMRI contrast map and the hemi doens't have the same vertices number!")
        else:
            print("No ply file, Can't check the vertices number")

    colors = utils.arr_to_colors_two_colors_maps(x, cm_big='YlOrRd', cm_small='PuBu',
        threshold=threshold, default_val=1)
    colors = np.hstack((x.reshape((len(x), 1)), colors))
    if output_file != '':
        op.join(BLENDER_ROOT_DIR, subject, 'fmri_{}.npy'.format(hemi))
    print('Saving {}'.format(output_file))
    np.save(output_file, colors)
Exemplo n.º 18
0
def load_surf(subject, mmvt_dir, subjects_dir):
    verts = {}
    for hemi in HEMIS:
        if op.isfile(
                op.join(mmvt_dir, subject, 'surf',
                        '{}.pial.npz'.format(hemi))):
            hemi_verts, _ = utils.read_pial(subject, mmvt_dir, hemi)
        elif op.isfile(
                op.join(subjects_dir, subject, 'surf',
                        '{}.pial.ply'.format(hemi))):
            hemis_verts, _ = utils.read_ply_file(
                op.join(subjects_dir, subject, 'surf',
                        '{}.pial.ply'.format(hemi)))
        else:
            print("Can't find {} pial ply/npz files!".format(hemi))
            return False
        verts[hemi] = hemi_verts
    return verts
Exemplo n.º 19
0
def convert_perecelated_cortex(subject, aparc_name, surf_type='pial', overwrite_ply_files=False, hemi='both'):
    lookup = {}
    for hemi in utils.get_hemis(hemi):
        lookup[hemi] = create_labels_lookup(subject, hemi, aparc_name)
        if len(lookup[hemi]) == 0:
            continue
        srf_fol = op.join(SUBJECTS_DIR, subject,'{}.{}.{}'.format(aparc_name, surf_type, hemi))
        ply_fol = op.join(SUBJECTS_DIR, subject,'{}_{}_{}_ply'.format(aparc_name, surf_type, hemi))
        blender_fol = op.join(MMVT_DIR, subject,'{}.{}.{}'.format(aparc_name, surf_type, hemi))
        utils.convert_srf_files_to_ply(srf_fol, overwrite_ply_files)
        rename_cortical(lookup, srf_fol, ply_fol)
        if surf_type == 'inflated':
            for ply_fname in glob.glob(op.join(ply_fol, '*.ply')):
                verts, faces = utils.read_ply_file(ply_fname)
                verts_offset = 5.5 if hemi == 'rh' else -5.5
                verts[:, 0] = verts[:, 0] + verts_offset
                utils.write_ply_file(verts, faces, ply_fname)
        utils.rmtree(blender_fol)
        shutil.copytree(ply_fol, blender_fol)
    return lookup
Exemplo n.º 20
0
def convert_perecelated_cortex(subject, aparc_name, surf_type='pial', overwrite_ply_files=False, hemi='both'):
    lookup = {}
    for hemi in utils.get_hemis(hemi):
        lookup[hemi] = create_labels_lookup(subject, hemi, aparc_name)
        if len(lookup[hemi]) == 0:
            continue
        srf_fol = op.join(SUBJECTS_DIR, subject,'{}.{}.{}'.format(aparc_name, surf_type, hemi))
        ply_fol = op.join(SUBJECTS_DIR, subject,'{}_{}_{}_ply'.format(aparc_name, surf_type, hemi))
        blender_fol = op.join(MMVT_DIR, subject,'{}.{}.{}'.format(aparc_name, surf_type, hemi))
        utils.convert_srf_files_to_ply(srf_fol, overwrite_ply_files)
        rename_cortical(lookup, srf_fol, ply_fol)
        if surf_type == 'inflated':
            for ply_fname in glob.glob(op.join(ply_fol, '*.ply')):
                verts, faces = utils.read_ply_file(ply_fname)
                verts_offset = 5.5 if hemi == 'rh' else -5.5
                verts[:, 0] = verts[:, 0] + verts_offset
                utils.write_ply_file(verts, faces, ply_fname)
        utils.rmtree(blender_fol)
        shutil.copytree(ply_fol, blender_fol)
    return lookup
Exemplo n.º 21
0
def freesurfer_surface_to_blender_surface(subject, hemi='both', overwrite=False):
    # verts, faces = {}, {}
    for hemi in utils.get_hemis(hemi):
        utils.make_dir(op.join(MMVT_DIR, subject, 'surf'))
        for surf_type in ['inflated', 'pial']:
            surf_name = op.join(SUBJECTS_DIR, subject, 'surf', '{}.{}'.format(hemi, surf_type))
            surf_wavefront_name = '{}.asc'.format(surf_name)
            surf_new_name = '{}.srf'.format(surf_name)
            hemi_ply_fname = '{}.ply'.format(surf_name)
            mmvt_hemi_ply_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.ply'.format(hemi, surf_type))
            mmvt_hemi_npz_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.npz'.format(hemi, surf_type))
            if overwrite or not op.isfile(mmvt_hemi_ply_fname) and not op.isfile(mmvt_hemi_npz_fname):
                print('{}: convert srf to asc'.format(hemi))
                utils.run_script('mris_convert {} {}'.format(surf_name, surf_wavefront_name))
                os.rename(surf_wavefront_name, surf_new_name)
                print('{}: convert asc to ply'.format(hemi))
                convert_hemis_srf_to_ply(subject, hemi, surf_type)
                # if surf_type == 'inflated':
                #     verts, faces = utils.read_ply_file(hemi_ply_fname)
                #     verts_offset = 5.5 if hemi == 'rh' else -5.5
                #     verts[:, 0] = verts[:, 0] + verts_offset
                #     utils.write_ply_file(verts, faces, '{}_offset.ply'.format(surf_name))
                if op.isfile(mmvt_hemi_ply_fname):
                    os.remove(mmvt_hemi_ply_fname)
                shutil.copy(hemi_ply_fname, mmvt_hemi_ply_fname)
            ply_fname = op.join(MMVT_DIR, subject, 'surf', '{}.{}.ply'.format(hemi, surf_type))
            if not op.isfile(mmvt_hemi_npz_fname):
                verts, faces = utils.read_ply_file(ply_fname)
                np.savez(mmvt_hemi_npz_fname, verts=verts, faces=faces)
                # verts[hemi], faces[hemi] = utils.read_ply_file(mmvt_hemi_npz_fname)
    # if not op.isfile(op.join(MMVT_DIR, subject, 'cortex.pial.npz')):
    #     faces['rh'] += np.max(faces['lh']) + 1
    #     verts_cortex = np.vstack((verts['lh'], verts['rh']))
    #     faces_cortex = np.vstack((faces['lh'], faces['rh']))
    #     utils.write_ply_file(verts_cortex, faces_cortex, op.join(MMVT_DIR, subject, 'cortex.pial.ply'))
    #     np.savez(op.join(MMVT_DIR, subject, 'cortex.pial.npz'), verts=verts_cortex, faces=faces_cortex)
    return utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.pial.ply')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.pial.npz')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.inflated.ply')) and \
           utils.both_hemi_files_exist(op.join(MMVT_DIR, subject, 'surf', '{hemi}.inflated.npz'))
Exemplo n.º 22
0
def calc_faces_verts_dic(subject, overwrite=False):
    ply_files = [op.join(SUBJECTS_DIR, subject,'surf', '{}.pial.ply'.format(hemi)) for hemi in HEMIS]
    out_files = [op.join(MMVT_DIR, subject, 'faces_verts_{}.npy'.format(hemi)) for hemi in HEMIS]
    subcortical_plys = glob.glob(op.join(MMVT_DIR, subject, 'subcortical', '*.ply'))
    errors = []
    if len(subcortical_plys) > 0:
        faces_verts_dic_fnames = [op.join(MMVT_DIR, subject, 'subcortical', '{}_faces_verts.npy'.format(
                utils.namebase(ply))) for ply in subcortical_plys]
        ply_files.extend(subcortical_plys)
        out_files.extend(faces_verts_dic_fnames)

    for ply_file, out_file in zip(ply_files, out_files):
        if not overwrite and op.isfile(out_file):
            # print('{} already exist.'.format(out_file))
            continue
        # ply_file = op.join(SUBJECTS_DIR, subject,'surf', '{}.pial.ply'.format(hemi))
        # print('preparing a lookup table for {}'.format(ply_file))
        verts, faces = utils.read_ply_file(ply_file)
        _faces = faces.ravel()
        print('{}: verts: {}, faces: {}, faces ravel: {}'.format(utils.namebase(ply_file), verts.shape[0], faces.shape[0], len(_faces)))
        faces_arg_sort = np.argsort(_faces)
        faces_sort = np.sort(_faces)
        faces_count = Counter(faces_sort)
        max_len = max([v for v in faces_count.values()])
        lookup = np.ones((verts.shape[0], max_len)) * -1
        diff = np.diff(faces_sort)
        n = 0
        for ind, (k, v) in enumerate(zip(faces_sort, faces_arg_sort)):
            lookup[k, n] = v
            n = 0 if ind<len(diff) and diff[ind] > 0 else n+1
        # print('writing {}'.format(out_file))
        np.save(out_file, lookup.astype(np.int))
        print('{} max lookup val: {}'.format(utils.namebase(ply_file), int(np.max(lookup))))
        if len(_faces) != int(np.max(lookup)) + 1:
            errors[utils.namebase(ply_file)] = 'Wrong values in lookup table! ' + \
                'faces ravel: {}, max looup val: {}'.format(len(_faces), int(np.max(lookup)))
    if len(errors) > 0:
        for k, message in errors.items():
            print('{}: {}'.format(k, message))
    return len(errors) == 0
Exemplo n.º 23
0
def freesurfer_surface_to_blender_surface(subject, hemi='both', overwrite=False):
    for hemi in utils.get_hemis(hemi):
        surf_name = op.join(SUBJECTS_DIR, subject, 'surf', '{}.pial'.format(hemi))
        surf_wavefront_name = '{}.asc'.format(surf_name)
        surf_new_name = '{}.srf'.format(surf_name)
        hemi_ply_fname = '{}.ply'.format(surf_name)
        mmvt_hemi_ply_fname = op.join(MMVT_DIR, subject, '{}.pial.ply'.format(hemi))
        if overwrite or not op.isfile(hemi_ply_fname):
            print('{}: convert srf to asc'.format(hemi))
            utils.run_script('mris_convert {} {}'.format(surf_name, surf_wavefront_name))
            os.rename(surf_wavefront_name, surf_new_name)
            print('{}: convert asc to ply'.format(hemi))
            convert_hemis_srf_to_ply(subject, hemi)
        for hemi in utils.get_hemis(hemi):
            if not op.isfile(mmvt_hemi_ply_fname):
                shutil.copy(hemi_ply_fname, mmvt_hemi_ply_fname)
            ply_fname = op.join(SUBJECTS_DIR, subject, 'surf', '{}.pial.ply'.format(hemi))
            verts, faces = utils.read_ply_file(ply_fname)
            np.savez(op.join(SUBJECTS_DIR, subject, 'mmvt', '{}.pial'.format(hemi)), verts=verts, faces=faces)
            shutil.copyfile(op.join(SUBJECTS_DIR, subject, 'mmvt', '{}.pial.npz'.format(hemi)),
                            op.join(MMVT_DIR, subject, '{}.pial.npz'.format(hemi)))
    return utils.both_hemi_files_exist(op.join(SUBJECTS_DIR, subject, 'surf', '{hemi}.pial.ply'))
Exemplo n.º 24
0
def calculate_subcorticals_activity(subject,
                                    volume_file,
                                    subcortical_codes_file='',
                                    aseg_stats_file_name='',
                                    method='max',
                                    k_points=100,
                                    do_plot=False):
    x = nib.load(volume_file)
    x_data = x.get_data()

    if do_plot:
        fig = plt.figure()
        ax = Axes3D(fig)

    sig_subs = []
    if subcortical_codes_file != '':
        subcortical_codes = np.genfromtxt(subcortical_codes_file,
                                          dtype=str,
                                          delimiter=',')
        seg_labels = map(str, subcortical_codes[:, 0])
    elif aseg_stats_file_name != '':
        aseg_stats = np.genfromtxt(aseg_stats_file_name,
                                   dtype=str,
                                   delimiter=',',
                                   skip_header=1)
        seg_labels = map(str, aseg_stats[:, 0])
    else:
        raise Exception('No segmentation file!')
    # Find the segmentation file
    aseg_fname = op.join(SUBJECTS_DIR, subject, 'mri', 'aseg.mgz')
    aseg = nib.load(aseg_fname)
    aseg_hdr = aseg.get_header()
    out_folder = op.join(SUBJECTS_DIR, subject, 'subcortical_fmri_activity')
    if not op.isdir(out_folder):
        os.mkdir(out_folder)
    sub_cortical_generator = utils.sub_cortical_voxels_generator(
        aseg, seg_labels, 5, False, FREE_SURFER_HOME)
    for pts, seg_name, seg_id in sub_cortical_generator:
        print(seg_name)
        verts, _ = utils.read_ply_file(
            op.join(SUBJECTS_DIR, subject, 'subcortical',
                    '{}.ply'.format(seg_name)))
        vals = np.array([x_data[i, j, k] for i, j, k in pts])
        is_sig = np.max(np.abs(vals)) >= 2
        print(seg_name, seg_id, np.mean(vals), is_sig)
        pts = utils.transform_voxels_to_RAS(aseg_hdr, pts)
        # plot_points(verts,pts)
        verts_vals = calc_vert_vals(verts,
                                    pts,
                                    vals,
                                    method=method,
                                    k_points=k_points)
        print('verts vals: {}+-{}'.format(verts_vals.mean(), verts_vals.std()))
        if sum(abs(verts_vals) > 2) > 0:
            sig_subs.append(seg_name)
        verts_colors = utils.arr_to_colors_two_colors_maps(verts_vals,
                                                           threshold=2)
        verts_data = np.hstack(
            (np.reshape(verts_vals, (len(verts_vals), 1)), verts_colors))
        np.save(op.join(out_folder, seg_name), verts_data)
        if do_plot:
            plot_points(verts, colors=verts_colors, fig_name=seg_name, ax=ax)
        # print(pts)
    utils.rmtree(
        op.join(BLENDER_ROOT_DIR, subject, 'subcortical_fmri_activity'))
    shutil.copytree(
        out_folder,
        op.join(BLENDER_ROOT_DIR, subject, 'subcortical_fmri_activity'))
    if do_plot:
        plt.savefig(
            '/home/noam/subjects/mri/mg78/subcortical_fmri_activity/figures/brain.jpg'
        )
        plt.show()
Exemplo n.º 25
0
def recreate_mesh_faces_verts(subject, ply_fname):
    verts, faces = utils.read_ply_file(ply_fname)
    faces_verts_out_fname = op.join(MMVT_DIR, subject, 'eeg', 'eeg_faces_verts.npy')
    utils.calc_ply_faces_verts(verts, faces, faces_verts_out_fname, True,
                               utils.namebase(faces_verts_out_fname))
Exemplo n.º 26
0
def parcelate(subject,
              atlas,
              hemi,
              surface_type,
              vertices_labels_ids_lookup=None,
              overwrite_vertices_labels_lookup=False):
    output_fol = op.join(MMVT_DIR, subject, 'labels',
                         '{}.{}.{}'.format(atlas, surface_type, hemi))
    utils.make_dir(output_fol)
    vtx, fac = utils.read_ply_file(
        op.join(MMVT_DIR, subject, 'surf',
                '{}.{}.ply'.format(hemi, surface_type)))
    if vertices_labels_ids_lookup is None or overwrite_vertices_labels_lookup:
        vertices_labels_ids_lookup = lu.create_vertices_labels_lookup(
            subject, atlas, True, overwrite_vertices_labels_lookup)[hemi]
    labels = lu.read_labels(subject, SUBJECTS_DIR, atlas, hemi=hemi)
    if 'unknown-{}'.format(hemi) not in [l.name for l in labels]:
        labels.append(lu.Label([], name='unknown-{}'.format(hemi), hemi=hemi))

    nV = vtx.shape[0]
    nF = fac.shape[0]
    nL = len(labels)
    # print('The number of unique labels is {}'.format(nL))

    vtxL = [[] for _ in range(nL)]
    facL = [[] for _ in range(nL)]

    now = time.time()
    for f in range(nF):
        utils.time_to_go(now, f, nF, runs_num_to_print=50000)
        # Current face & labels
        Cfac = fac[f]
        Cidx = [vertices_labels_ids_lookup[vert_ind] for vert_ind in Cfac]
        # Depending on how many vertices of the current face
        # are in different labels, behave differently
        # nuCidx = len(np.unique(Cidx))
        # if nuCidx == 1: # If all vertices share same label
        # same_label = utils.all_items_equall(Cidx)
        # if same_label:
        if Cidx[0] == Cidx[1] == Cidx[2]:
            # Add the current face to the list of faces of the
            # respective label, and don't create new faces
            facL[Cidx[0]] += [Cfac.tolist()]
        else:  # If 2 or 3 vertices are in different labels
            # Create 3 new vertices at the midpoints of the 3 edges
            vtxCfac = vtx[Cfac]
            vtxnew = (vtxCfac + vtxCfac[[1, 2, 0]]) / 2
            vtx = np.concatenate((vtx, vtxnew))
            # Define 4 new faces, with care preserve normals (all CCW)
            facnew = [[Cfac[0], nV, nV + 2], [nV, Cfac[1], nV + 1],
                      [nV + 2, nV + 1, Cfac[2]], [nV, nV + 1, nV + 2]]
            # Update nV for the next loop
            nV = vtx.shape[0]
            # Add the new faces to their respective labels
            facL[Cidx[0]] += [facnew[0]]
            facL[Cidx[1]] += [facnew[1]]
            facL[Cidx[2]] += [facnew[2]]
            freq_Cidx = mode(Cidx)
            facL[freq_Cidx] += [facnew[3]]  # central face
    # Having defined new faces and assigned all faces to labels, now
    # select the vertices and redefine faces to use the new vertex indices
    # Also, create the file for the indices
    # fidx = fopen(sprintf('%s.index.csv', srfprefix), 'w');

    # params = []
    # for lab in range(nL):
    #     facL_lab = facL[lab]
    #     facL_lab_flat = utils.list_flatten(facL_lab)
    #     vidx = list(set(facL_lab_flat))
    #     vtxL_lab = vtx[vidx]
    #     params.append((facL_lab, vtxL_lab, vidx, nV, labels[lab].name, hemi, output_fol))
    # utils.run_parallel(writing_ply_files_parallel, params, njobs=n_jobs)
    #
    ret = True
    for lab in range(nL):
        ret = ret and writing_ply_files(subject, surface_type, lab, facL[lab],
                                        vtx, vtxL, labels, hemi, output_fol)
    return ret