Exemplo n.º 1
0
def train(net, ctx, batch_size=64, epochs=1, learning_rate=0.01, wd=0.001):
    train_data = gluon.data.DataLoader(train_imgs, batch_size, shuffle=True)
    test_data = gluon.data.DataLoader(test_imgs, batch_size)
    # 确保net的初始化在ctx上
    net.collect_params().reset_ctx(ctx)
    net.hybridize()
    loss = gluon.loss.SoftmaxCrossEntropyLoss()
    # 训练
    trainer = gluon.Trainer(net.collect_params(), 'sgd', {
        'learning_rate': learning_rate,
        'wd': wd
    })
    utils.train(train_data, test_data, net, loss, trainer, ctx, epochs)
Exemplo n.º 2
0
def run_experiment(dataset, optimizer, optimizer_name, batch_size=100, num_epochs=10, data_dir='/home/app/datasets',
                   seed=12345,
                   use_gpu=True, create_graph=False, **kwargs):
    """
    Runs a single training experiment, i.e one dataset and one optimizer
    Args:
        dataset: dataset name, one of ['MNIST', 'Fashion_MNIST', 'CIFAR']
        optimizer: torch.optim.optimizer
        optimizer_name: name of the optimizer
        batch_size: batch size for training
        num_epochs: num epochs to train
        data_dir: directory containing the dataset, or where to store a downloaded dataset
        seed: seed to set for reproducibility
        use_gpu: whether to try using the gpu or not
        create_graph: used by the training function, when computing the gradient
        **kwargs: kwargs to pass to the utils.train function
    Returns:
        Dictionary of results
    """
    torch.manual_seed(seed)

    logging.info("Dataset: {0}, Optimizer: {1}".format(dataset, optimizer_name))

    train_loader, test_loader = utils.load_data(data_dir, batch_size=batch_size, dataset=dataset)

    training_losses, test_losses, training_accuracies, test_accuracies, model = \
        utils.train(train_loader, test_loader, use_gpu=use_gpu, create_graph=create_graph,
                    num_epochs=num_epochs, optimizer=optimizer, **kwargs)

    return {'training_losses': training_losses, 'test_losses': test_losses,
            'training_accuracies': training_accuracies, 'test_accuracies': test_accuracies,
            'model': model}
Exemplo n.º 3
0
def get_correlations(net, model_name, n_epochs, evaluation_epochs,
                     train_loader, test_loader, device):
    criterion = torch.nn.CrossEntropyLoss()
    optimiser = optim.SGD(net.parameters(), lr=0.001)
    trained_net = train(net,
                        train_loader,
                        criterion,
                        optimiser,
                        n_epochs,
                        device,
                        save=True,
                        name=model_name,
                        log_interval=1)
    test(trained_net, test_loader, criterion, device)

    trained_activations = get_activations(
        net, 'models/{}_{}.pth'.format(model_name, n_epochs - 1), train_loader,
        device)
    correlations = []
    for epoch in evaluation_epochs:
        print(model_name, 'at epoch:', epoch)
        partial_activations = get_activations(
            net, 'models/{}_{}.pth'.format(model_name, epoch), train_loader,
            device)
        correlation = get_diag_correlation(trained_activations,
                                           partial_activations)
        correlations.append(np.mean(np.diag(correlation)))
        print("HERE")
    return correlations
Exemplo n.º 4
0
def train_and_save_model():
    trainset, testset = data.get_train_test_set()
    trainloader = torch.utils.data.DataLoader(trainset,
                                              batch_size=BATCH_SIZE,
                                              shuffle=True)
    testloader = torch.utils.data.DataLoader(testset,
                                             batch_size=BATCH_SIZE,
                                             shuffle=False)
    net = resnet.resnet(in_channel=3, num_classes=1)
    optimizer = torch.optim.Adam(net.parameters(), lr=LR)
    criterion = nn.BCELoss()
    utils.train(
        net,
        trainloader,
        testloader,
        20,
        optimizer,
        criterion,
        debug=DEBUG,
    )
Exemplo n.º 5
0
def main(ix):
    args = utils.initialize()
    tr_dl, vd_dl, ts_dl, e_ix_ln, r_ix_ln, t_ix_ln, tp_ix, tp_rix = utils.data(
        args)
    mdl, opt, lr_sc, ls_f, st_e, bst_ls = utils.prepare(
        args, e_ix_ln, r_ix_ln, t_ix_ln)
    tb_sw = SummaryWriter() if utils.is_master(args) else None
    if not args.test:
        ls_mtr = utils.BestMetric() if utils.is_master(args) else None
        for e in range(st_e, args.epochs + 1):
            utils.train(args, e, mdl, opt, ls_f, tr_dl, tb_sw)
            if e % args.validation_frequency == 0 or e == args.epochs:
                utils.validate(args, e, mdl, opt, ls_f, vd_dl, tp_ix, tp_rix,
                               ls_mtr, tb_sw)
            lr_sc.step()
    else:
        utils.test(args, mdl, ts_dl, tp_ix, tp_rix, tb_sw)
    if utils.is_master(args):
        tb_sw.flush()
        tb_sw.close()
Exemplo n.º 6
0
def pre_train_cnn(cnn, device, loaders, n_ep=200, val=False, wd=1e-4, lr=1e-3, save_model_path=None):
    print('Training CNN...')

    model = cnn(num_classes=230)

    if val:
        tr_loader = loaders['pre_train']
        va_loader = loaders['pre_val']
    else:
        tr_loader = loaders['all_train']
        va_loader = None

    model = train(model, device, tr_loader, n_ep, wd, lr, va_loader=va_loader)

    if save_model_path is not None:
        torch.save(model.state_dict(), save_model_path)

    return model
Exemplo n.º 7
0
def train_DEM(cnn, device, loaders, word_embeddings, n_ep=50, wd=1e-8, lr=1e-4, val=False, save_model_path=None):
    print('Training DEM...')

    model = DEM(cnn)
    word_embeddings = torch.from_numpy(word_embeddings).to(device)

    if val:
        tr_loader = loaders['train']
        va_loader = loaders['val']
    else:
        tr_loader = loaders['all_train']
        va_loader = None

    model = train(model, device, tr_loader, n_ep, wd, lr, word_embeddings, va_loader=va_loader, grad_norm_clip=1)

    if save_model_path is not None:
        torch.save(model.state_dict(), save_model_path)

    return model
Exemplo n.º 8
0
optim_kwargs = {'lr': lr, 'momentum': momentum}

optimizer = optim.SGD(model.parameters(), **optim_kwargs)
if scheduler_steps is not None and scheduler_gamma is not 0:
    scheduler = MultiStepLR(optimizer,
                            milestones=scheduler_steps,
                            gamma=scheduler_gamma)
else:
    scheduler = None

loss_fn = nn.CrossEntropyLoss()
acc = test(model, device, test_loader, 0, loss_fn)
for epoch in range(1, epochs + 1):
    logging.info("Training epoch {}/{}".format(epoch, epochs + 1))
    if robust is False:
        train(model, device, train_loader, optimizer, epoch, loss_fn)
    else:
        train_regularized(model, device, train_loader, optimizer, epoch,
                          loss_fn, lambda_const)
    if scheduler:
        scheduler.step(epoch)
    acc = test(model, device, test_loader, epoch, loss_fn)

model_name = "pretrained_models/{}.pt".format(output_file)
torch.save(model.state_dict(), model_name)

# store arguments as mongodb object
args_dict = args.__dict__
args_dict['model_path'] = os.path.abspath(model_name)
args_dict['final_acc'] = acc
Exemplo n.º 9
0
                       noise_level,
                       model_dir=model_dir)
        else:
            print("starting from epoch {}".format(start_epoch))
            net = recreate_model(model_to_load, dataset=dataset, act=act)

        # optimiser parameters
        optimiser = get_optimiser(net.parameters(), op, learning_rate,
                                  momentum)

        # training criterion
        criterion = torch.nn.CrossEntropyLoss()

        # train network
        train(net,
              train_loader,
              test_loader,
              criterion,
              optimiser,
              epochs,
              noise_type,
              noise_level,
              save=True,
              name=experiment_name,
              model_dir=model_dir,
              results_dir=experiment_results_directory,
              start_epoch=start_epoch)

    else:
        print("results are already present, skipping test.")