Exemplo n.º 1
0
def getMajor(curr_Mc,**kwargs):
    """
    :param curr_Mc: low-cut magnitude
    :return:
        - aCluster: list of clusters
          each cluster is a catalog contains a major shock and its offsprings
          'sel_p','sel_c' is used to select related NND data in aNND
        - aNND: nearest neighbor distance
          'aEqID_p': parent's ID of the pair
          'aEqID_c': child's ID of the pair
    """
    import numpy as np
    import os

    # ------------------------------my modules--------------------------------------
    import sys
    sys.path.append('/auto/home/lhuang/PycharmProjects/clustering-analysis-master')
    import src.data_utils as data_utils


    eqCat = EqCat()  # original catalog
    eqCatMc = EqCat()  # this catalog will be modified with each Mc iteration

    # =================================1==============================================
    #                            dir, file, params
    # ================================================================================
    data_dir = './data' # Todo: .. or .
    file_in = 'hs_1981_2018_all.mat'

    eqCat.loadMatBin(os.path.join(data_dir, file_in))
    eqCat.toCart_coordinates()
    eqCatMc.copy(eqCat)
    if 'min' in kwargs.keys():
        min = kwargs['min']
    else:
        min = 6.0
    if 'max' in kwargs.keys():
        max = kwargs['max']
    else:
        max = None
    eqCatMc.selectEvents(min,max,'Mag')

    # load nearest neighbor distances
    NND_file = './data/%s_NND_Mc_%.1f_HD.mat' % (file_in.split('.')[0], curr_Mc)# Todo: .. or .
    dNND = data_utils.loadmat(NND_file)  # ,  struct_as_record=True)

    aCluster = np.array([])
    for i in list(range(eqCatMc.size())):
        cat = EqCat()
        cat.copy(eqCat)
        sel_c = dNND['aEqID_p'] == eqCatMc.data['N'][i]
        sel_p = dNND['aEqID_c'] == eqCatMc.data['N'][i]
        sel = np.logical_or(sel_p,sel_c)
        cat.selEventsFromID(dNND['aEqID_c'][sel],repeats=True)
        cat.data['sel_p'] = sel_p
        cat.data['sel_c'] = sel_c
        aCluster=np.append(aCluster,cat)
        print("major earthquake:%.1f"%cat.data['Time'][0],"mag:",cat.data['Mag'][0])
    print("Total Ms: %d" % aCluster.shape[0])
    return aCluster,dNND
Exemplo n.º 2
0
    'aMc':
    np.array([3.1, 3.2, 3.3, 3.4, 3.6, 3.7, 3.8,
              3.9]),  #np.array([3.0, 4.0]),np.array( [2.0, 2.5, 3.0, 3.5]
    # fractal dimension and b for eq. (1)
    'D': 1.6,  #1.6  TODO: - these values should be contrained independently
    'b': 1.0,
    #=================plotting==============
    'eta_binsize': .3,
    'xmin': -13,
    'xmax': 0,
}

#=================================2==============================================
#                            load data, select events
#================================================================================
eqCat.loadMatBin(os.path.join(dir_in, file_in))
print('total no. of events', eqCat.size())
eqCat.selectEvents(dPar['aMc'][0], None, 'Mag')
#eqCat.selector( tmin, tmax, 'Time')
print('no. of events after initial selection', eqCat.size())
#=================================1==============================================
#                           to cartesian coordinates
#================================================================================
# two ways to do the distance comp: 1 project into equal distance azimuthal , comp Cartersian distance in 3D
#                                   2 get surface distance from lon, lat (haversine), use pythagoras to include depth
eqCat.toCart_coordinates(projection='aeqd')

for dPar['Mc'] in dPar['aMc']:
    print('-------------- current Mc:', dPar['Mc'], '---------------------')
    # select magnitude range
    eqCat.selectEvents(dPar['Mc'], None, 'Mag')
Exemplo n.º 3
0
#                            dir, file, params
#================================================================================
data_dir = 'data'
plot_dir = 'plots'
file_in  = 'hs_1981_2011_all.mat'

dPar  = {   'a_Mc'        :  np.array([3.0, 4.0]), #np.array( [2.0, 2.5, 3.0, 3.5]),
            #separate clustered and background
            'eta_0'       : -5.0, # run 2_eta_0.py and
                                  # if file exists: default = load this value from ASCII file
            }

#=================================2==============================================
#                            load data, select events
#================================================================================
eqCat.loadMatBin(  os.path.join( data_dir, file_in))
print( 'total no. of events', eqCat.size())
eqCat.selectEvents( dPar['a_Mc'][0], None, 'Mag')
#eqCat.selectEvents( tmin, tmax, 'Time')
print( 'no. of events after initial selection', eqCat.size())

iMc = 0
for f_Mc in dPar['a_Mc']:
    eta_0_file = '%s/%s_Mc_%.1f_eta_0.txt'%(data_dir, file_in, f_Mc)
    # load eta_0 value
    if os.path.isfile( eta_0_file):
        print( 'load eta_0 from file'),
        f_eta_0 = np.loadtxt( eta_0_file, dtype = float)
        print( f_eta_0)
    else:
        print( 'could not find eta_0 file', eta_0_file, 'use value from dPar', dPar['eta_0'])
#print dir( dataUtils)
#=================================1==============================================
#                            dir, file, params
#================================================================================
dir_in = 'data'
file_in = 'hs_1981_2011_all.mat'
#xmin, xmax = -122, -114
#ymin, ymax = 34, 38
Mmin, Mmax = 3, None
tmin, tmax = 1990, 2018

#=================================2==============================================
#                            load data, select events
#================================================================================
os.chdir(dir_in)
eqCat.loadMatBin(file_in)
print('total no. of events', eqCat.size())
eqCat.selectEvents(Mmin, Mmax, 'Mag')
eqCat.selectEvents(tmin, tmax, 'Time')
print('no. of events after initial selection', eqCat.size())
#=================================3==============================================
#                          test plot TODO: use basemap
#================================================================================
plt.figure()
plt.scatter(eqCat.data['Lon'],
            eqCat.data['Lat'],
            s=np.exp(eqCat.data['Mag']),
            c=eqCat.data['Mag'],
            linewidth=0)
plt.savefig(file_in.replace('mat', 'png'))
plt.show()
Exemplo n.º 5
0
#=================================1==============================================
#                            load data, select events
#================================================================================
curr_Mc = dPar['aMc'][0]
klist = [20, 20, 20, 20, 20]  #150
minklst = [50]  #80, ,
namelist = ['Baja', 'Northridge', 'HectorMine', 'Landers', 'JoshuaTree']  #

for name, k in zip(namelist, klist):
    # load nearest neighbor distances
    NND_file = 'data/NND_%s.mat' % name
    dNND = data_utils.loadmat(NND_file)  #,  struct_as_record=True)

    #load Landers/Joshua Tree earthquake catalog
    cat_file = 'data/cat_%s.mat' % name
    eqCat.loadMatBin(cat_file)

    # ==================================2=============================================
    #                       compute space-time-magnitude distance, histogram
    # ================================================================================
    # select only the clustering event pairs
    sel_cl = np.log10(dNND['aNND']) <= -5  #-4.7
    # HD
    HD = dNND['aHD'][sel_cl]
    print('catalog size: ', len(HD))
    #print('*************************', HD)
    ## l
    #l = 10 ** (-3.22 + 0.69 * eqCat.data['Mag'][0]) / 2 # unit: given by wells and coppersman
    #l=10**(0.44*eqCat.data['Mag'][0]-2) # given by AGU paper
    #L = 1.99*10 ** (0.49 * eqCat.data['Mag'][0]-3)# calc by myself according to AGU
    ## Rl
from src.seis_utils import *

#import src.dataIO_utils
#------------------------------my modules--------------------------------------
from src.EqCat import *

eqCat = EqCat()

#=================================1==============================================
#                            dir, file, params
#================================================================================
dir_in = 'data'
file_in = 'hs_1981_2018_all.txt'
#file_in = 'test_HS.txt'

#=================================2==============================================
#                            load data
#================================================================================
os.chdir(dir_in)
eqCat.loadEqCat(file_in, 'HS_reloc', removeColumn=[24, 25, 26])

print(eqCat.size())
print(sorted(eqCat.data.keys()))
#=================================3==============================================
#                     test plot and save to .mat binary
#================================================================================
eqCat.saveMatBin(file_in.replace('txt', 'mat'))
newEqCat = EqCat()
newEqCat.loadMatBin(file_in.replace('txt', 'mat'))
print(newEqCat.size())
print(sorted(newEqCat.data.keys()))
Exemplo n.º 7
0
def getLanders():
    eqCat = EqCat()  # original catalog
    eqCatMc = EqCat()  # this catalog will be modified with each Mc iteration
    catLanders = EqCat()
    catCoso = EqCat()

    # =================================1==============================================
    #                            dir, file, params
    # ================================================================================
    data_dir = '../data'
    plot_dir = '../plots'
    file_in = 'hs_1981_2011_all.mat'

    dPar = {
        'a_Mc': np.array([3.0, 4.0]),  # np.array( [2.0, 2.5, 3.0, 3.5]),
        # separate clustered and background
        'eta_0': -5.0,
        'testPlot': True,
        'D':
        1.6,  # 1.6  TODO: - these values should be contrained independently
        'b': 1.0,
    }

    curr_Mc = dPar['a_Mc'][0]
    # =================================2==============================================
    #                            load data, select events
    # ================================================================================
    eqCat.loadMatBin(os.path.join(data_dir, file_in))
    print('total no. of events', eqCat.size())
    eqCat.selectEvents(curr_Mc, None, 'Mag')
    #eqCat.toCart_coordinates()
    # eqCat.selector( tmin, tmax, 'Time')
    print('no. of events after initial selection', eqCat.size())

    catLanders.copy(eqCat)
    catCoso.copy(eqCat)

    catLanders.selectEvents(7.0, None, 'Mag')
    catLanders.selectEvents(34, 35, 'Lat')
    catLanders.selectEvents(-117, -116, 'Lon')
    catLanders.selectEvents(1992, 1993, 'Time')
    #print("===========Landers Info============\n",catLanders.data)

    catCoso.selectEvents(catLanders.data['Time'][0],
                         catLanders.data['Time'][0] + 0.1, 'Time')
    catCoso.selectEvents(-118.5, -117, 'Lon')
    catCoso.selectEvents(35.5, 36.5, 'Lat')
    #print("===========Coso Info===============\nLon\tLat\tMag\tTime\t")
    #for lon,lat,mag,time in zip(catCoso.data['Lon'],catCoso.data['Lat'],catCoso.data['Mag'],catCoso.data['Time']):
    #    print("%.3f\t%.3f\t%.2f\t%.8f\t"%(lon,lat,mag,time))

    aEta = np.array([])
    aT = np.array([])
    aR = np.array([])

    catAll = EqCat()
    catAll.merge(catLanders, catCoso)
    catAll.toCart_coordinates()

    #print(catAll.data)

    for x, y, time in zip(catAll.data['X'][1:], catAll.data['Y'][1:],
                          catAll.data['Time'][1:]):
        x = catAll.data['X'][0]
        y = catAll.data['Y'][0] + 3
        t = (time - catAll.data['Time'][0]) * 10**(-dPar['b'] *
                                                   catAll.data['Mag'][0] / 2)
        print("distance:", ((x - catAll.data['X'][0])**2 +
                            (y - catAll.data['Y'][0])**2)**0.5)
        r = ((x - catAll.data['X'][0])**2 + (y - catAll.data['Y'][0])**2)**(
            dPar['D'] / 2) * 10**(-dPar['b'] * catAll.data['Mag'][0] / 2)
        eta = r * t
        aEta = np.append(aEta, np.log10(eta))
        aT = np.append(aT, np.log10(t))
        aR = np.append(aR, np.log10(r))
    print("===========Neareast Neighbor Distance===============\nr\tt\teta\t")
    for r, t, eta in zip(
            aR, aT, aEta
    ):  #(catCoso.data['Time']-catLanders.data['Time'][0])*365.25*24*3600
        print("%f\t%f\t%f" % (r, t, eta))

    return catAll, aT, aR, aEta
    # fractal dimension and b for eq. (1)
    'D': 1.6,  #1.6  TODO: - these values should be constrained independently
    'b': 1.0,
    #=================plotting==============
    'eta_binsize': .2,
    'nnd_binsize': .2,
    'hd_binsize': .2,
    'xmin': 0,
    'xmax': 1.0,
    'eta_0': -5.0,
}

#=================================1==============================================
#                            load data, select events
#================================================================================
eqCat.loadMatBin(os.path.join('data', file_in))

curr_Mc = dPar['aMc'][0]
klist = [30, 30, 30]  #150
minklst = [50]  #80, ,
namelist = [
    'Northridge',
]  #'Baja','HectorMine','Landers'

for name, k in zip(namelist, klist):
    # load nearest neighbor distances
    NND_file = 'data/NND_%s.mat' % name
    dNND = data_utils.loadmat(NND_file)  #,  struct_as_record=True)

    #load Landers/Joshua Tree earthquake catalog
    cat_file = 'data/cat_%s.mat' % name