Exemplo n.º 1
0
    def __init__(self, image, dimensions=199, model=None, initial_face=None,
                 callback=None):
        """Initializes fitter for given image.

        Fits provided number of dimensions of given model to the image.
        """
        self.__image = array(image)
        self.__model = model
        self.__pcs = dimensions
        self._dimensions = (dimensions
                            + Face.LIGHT_COMPONENTS_COUNT
                            + Face.DIRECTION_COMPONENTS_COUNT
                            + Face.SCALE_COMPONENTS_COUNT)
        self.__callback = callback

        self._initial_face = initial_face
        if self._initial_face is None:
            self._initial_face = Face(
                coefficients=zeros(self.__pcs, dtype='f')
            )
        coefficients = self._initial_face.coefficients
        if len(coefficients) != self.__pcs:
            correct_coefficients = zeros(self.__pcs, dtype='f')
            count = min(len(coefficients), self.__pcs)
            correct_coefficients[:count] = coefficients[:count]
            self._initial_face = Face(
                coefficients=correct_coefficients,
                directed_light=self._initial_face.directed_light,
                ambient_light=self._initial_face.ambient_light,
                scale=self._initial_face.scale
            )
Exemplo n.º 2
0
def test_set_directed_light():
    face = Face()
    face.position = (0, 0, 0)
    assert allclose(face.position, (0, 0, 0))
    assert allclose(face.position_cartesian, (0, 0, 1)) 
    face.position = (1, 1, 1)
    assert allclose(face.position, (1, 1, 1))
    assert allclose(face.position_cartesian, (0, 1, 0)) 
Exemplo n.º 3
0
def test_set_directed_light():
    face = Face()
    face.position = (0, 0, 0)
    assert allclose(face.position, (0, 0, 0))
    assert allclose(face.position_cartesian, (0, 0, 1))
    face.position = (1, 1, 1)
    assert allclose(face.position, (1, 1, 1))
    assert allclose(face.position_cartesian, (0, 1, 0))
Exemplo n.º 4
0
    def calculate_shrink(self):
        self.__step = 'shrink'
        self.__parameters[1:] = self.__parameters[0] + self.__sigma * \
            (self.__parameters[1:] - self.__parameters[0])
        self.__errors[1:] = [None] * (len(self.__errors) - 1)

        self.__end = self.__parameters[0] + self.__sigma * \
            (self.__end - self.__parameters[0])
        self.end_error = None

        for i in range(1, self._dimensions):
            self.request_face(Face.from_array(self.__parameters[i]), i)
        self.request_face(Face.from_array(self.__end), self._dimensions)
Exemplo n.º 5
0
    def start(self):
        self.__loop = 0
        self.__face = self._initial_face
        self.__parameters = self._initial_face.as_array

        self.request_face(self.__face, 'init')

        self.__errors = {}
        self.__generate_errors()
        self.__indices = [0] * len(self.__levels)
        self.__directions = [1] * len(self.__levels)

        self.__parameters[self.__levels] = [
            self.__get_value(i, self.__indices[i])
            for i in range(len(self.__levels))
        ]

        change_on = 0
        while change_on != -1:
            self.__errors[tuple(
                self.__indices)] = self.__get_parameter(change_on=change_on)
            change_on = self.__inc_index()

        result = self.__convert_parameters()

        parameters = self._initial_face.as_array
        parameters[self.__levels] = result[-1][0]

        face = Face.from_array(parameters)
        self.get_face(face)

        self.finish(face)
Exemplo n.º 6
0
def test_face_setter():
    view = View()
    model = Model(view)
    face = Face()
    model.face = face
    assert model.face is face
    assert view.face is face
Exemplo n.º 7
0
def test_receive_images():
    results = []
    images = [[0]*4, [1]*4, [2]*4]

    face = Face()
    view = View()
    model = Model(view)
    callback = lambda img: results.append(img)

    model.request_image(face, callback)
    model.request_image(face, callback)

    view.image = images[0]
    view.callback()
    assert len(results) == 1
    assert allclose(results[0], images[0])

    view.image = images[1]
    view.callback()
    assert len(results) == 2
    assert allclose(results[1], images[1])

    final_callback = lambda img: results.append([img])
    model.request_image(face, callback)
    view.image = images[2]
    view.callback()
    assert len(results) == 3
    assert allclose(results[2], [images[2]])
Exemplo n.º 8
0
    def __derivative_face(self, param, dx):
        params = self.__face.as_array
        if param >= 0:
            params[param] += dx
        else:
            params[param] += self.__light_dx

        return Face.from_array(params)
Exemplo n.º 9
0
    def start(self):
        face = self._initial_face.as_array

        for _ in range(self.__max_loops):
            derivatives = self.__get_derivatives(face)
            face += derivatives * self.__step

        self.finish(Face.from_array(face))
Exemplo n.º 10
0
def test_request_image():
    results = []

    face = Face()
    callback = lambda img: results.append(img)
    model = Model(View())

    model.request_image(face, callback)
    assert results == []
Exemplo n.º 11
0
    def get_face(self, face):
        """Get face image by face object.

        Accepts both `Face` instance
        and Face representation as `NumPy` `array`.
        """
        if isinstance(face, ndarray):
            face = Face.from_array(face)
        return self.__model.get_image(face)
Exemplo n.º 12
0
 def __initiate_parameters(self):
     self.__step = 'start'
     initial_parameters = concatenate((
         self._initial_face.coefficients,
         [self._initial_face.ambient_light],
         self._initial_face.directed_light
     ))
     for i in range(len(self.__parameters)):
         # print('Initial step {} of {}'.format(i, self._dimensions))
         # self.__parameters[i] = randn(self._dimensions) * 1
         # self.__parameters[i] = zeros(self._dimensions)
         # self.__parameters[i][:i] = self.__offset
         self.__parameters[i] = initial_parameters.copy()
         self.__parameters[i][:i] += self.__offset
         self.request_face(Face.from_array(self.__parameters[i]), i)
     # self.__end = ones(self._dimensions)
     # self.__end = randn(self._dimensions)
     self.__end = initial_parameters + self.__offset
     self.request_face(Face.from_array(self.__end), self._dimensions)
Exemplo n.º 13
0
def test_receive_image():
    results = []
    face = Face()
    view = View()
    model = Model(view)
    callback = lambda img: results.append(img)
    model.request_image(face, callback)
    view.image = [1, 2, 3, 4]
    view.callback()
    assert allclose(results[0], view.image)
Exemplo n.º 14
0
    def receive_image(self, image, index=None):
        if index == 'init':
            return
        elif index == 'pre':
            self.__get_parameter(self.__current_step + 1)
            return

        shadows = image

        if index is None:
            self.finish(self.__face)
            return

        self.__errors[index] = self.get_image_deviation(shadows)

        if None in self.__errors:
            return

        errors = array(self.__errors)
        max_error = errors.max()
        if self.__loop >= self.__determined_loops:
            X = exp(-errors / max_error).sum()
            v = rand()
            best_index = -1
            t = 0
            for i, error in enumerate(errors):
                e = exp(error / max_error) / X
                t += e
                if v <= e:
                    best_index = i
                    break
                else:
                    v -= e
            if best_index == -1:
                best_index = len(self.__errors) - 1
        else:
            best_index = argmin(self.__errors)

        self.__parameters[self.__current_step] = self.__values[best_index]
        self.__face = Face.from_array(self.__parameters)
        print('{}.{}: Error of the best is {} ({})'.format(
            self.__loop, self.__current_step, self.__errors[best_index],
            min(self.__errors)))

        if self.__current_step + 1 == self._dimensions \
                and self.__loop + 1 >= self.__max_loops:
            self.request_face(self.__face)
            return
        elif self.__current_step + 1 == self._dimensions:
            self.__current_step = 0
            self.__loop += 1
            self.request_face(self.__face, 'pre')
            return

        self.request_face(self.__face, 'pre')
Exemplo n.º 15
0
    def __generate_face_parameters(self):
        """Generate random face.

        Based on needed parameters to iterate by and initial Face.
        """
        parameters = self._initial_face.as_array
        parameters[self.__iterating_parameters] = randn(
            len(self.__iterating_parameters))
        self.__parameters.append(parameters)
        self.__differences.append(None)
        self.__values.append(None)
        return Face.from_array(parameters)
Exemplo n.º 16
0
def test_request_images():
    results = []
    images = [[0]*4, [1]*4, [2]*4]

    face = Face()
    view = View()
    model = Model(view)
    callback = lambda img: results.append(img)

    model.request_image(face, callback)
    model.request_image(face, callback)
    assert len(results) == 0
Exemplo n.º 17
0
 def __next_iteration(self):
     self.__loop += 1
     self.__current_step = -5
     coefficients = (self.__face.coefficients -
                     self.__step * self.__derivatives[:-Face.NON_PCS_COUNT])
     directed_light = (
         self.__face.directed_light -
         self.__step * self.__derivatives[Face.LIGHT_COMPONENTS_SLICE] / 50)
     self.__face = Face(coefficients=coefficients,
                        directed_light=directed_light)
     # print(self.__derivatives)
     self.request_face(self.__face, 'start_iteration')
Exemplo n.º 18
0
    def __get_parameter(self, i):
        self.__current_step = i

        if self.__steps[i] % 2 == 0:
            self.__values = linspace(-4, 4, self.__steps[i] + 1, dtype='f')
        else:
            self.__values = linspace(-4, 4, self.__steps[i] + 2, dtype='f')

        self.__errors = [None] * self.__values.size
        for i, value in enumerate(self.__values):
            self.__values[i] = value
            parameters = self.__parameters.copy()
            parameters[self.__current_step] = value
            self.request_face(Face.from_array(parameters), i)
Exemplo n.º 19
0
    def start(self):
        x0 = self._initial_face.as_array.copy()

        final_simplex = x0.copy()
        final_simplex[Face.PCS_SLICE] += self.__offset
        final_simplex[0:-Face.NON_PCS_COUNT:2] = 1
        final_simplex[1:-Face.NON_PCS_COUNT:2] = -1
        final_simplex[Face.NON_PCS_SLICE] = 1

        initial_simplex = array([concatenate((x0[:i], final_simplex[i:]))
                                 for i in range(self._dimensions + 1)], 'f')
        options = {
            'initial_simplex': initial_simplex
        }
        result = minimize(self.get_face_deviation, x0,
                          method='nelder-mead', options=options)
        self.finish(Face.from_array(result))
Exemplo n.º 20
0
    def start(self):
        x0 = self._initial_face.as_array.copy()

        final_simplex = x0.copy()
        final_simplex[Face.PCS_SLICE] += self.__offset
        final_simplex[0:-Face.NON_PCS_COUNT:2] = 1
        final_simplex[1:-Face.NON_PCS_COUNT:2] = -1
        final_simplex[Face.NON_PCS_SLICE] = 1

        initial_simplex = array([
            concatenate((x0[:i], final_simplex[i:]))
            for i in range(self._dimensions + 1)
        ], 'f')
        options = {'initial_simplex': initial_simplex}
        result = minimize(self.get_face_deviation,
                          x0,
                          method='nelder-mead',
                          options=options)
        self.finish(Face.from_array(result))
Exemplo n.º 21
0
    def receive_image(self, image, index=None):
        if index == 'init':
            return
        elif index == 'finish':
            self.finish(self.__face)
            return

        self.__errors[tuple(self.__indices)] = self.get_image_deviation(image)

        change_on = self.__inc_index()
        if change_on == -1:
            result = self.__convert_parameters()
            parameters = self._initial_face.as_array
            parameters[self.__levels] = result[-1][0]
            self.__face = Face.from_array(parameters)
            self.request_face(self.__face, 'finish')
            return

        self.__get_parameter(change_on=change_on)
Exemplo n.º 22
0
    def __calculate_result(self):
        """Get weighted sum of achieved parameters.

        Normalize probabilities as their sum should be 1.
        Then get sum of parameters got during iterations
        multiplied by corresponding probabilities.

        Form parameters of final face and finish the fitting procedure.
        """
        max_difference = max(self.__differences)
        normalized_differences = array(self.__differences) - float(
            sum(
                Decimal(diff - max_difference).exp()
                for diff in self.__differences).ln())
        params = [
            sum(
                Decimal(float(p[i])) * Decimal(diff).exp()
                for diff, p in zip(normalized_differences, self.__parameters))
            for i in self.__estimating_parameters
        ]
        parameters = self._initial_face.as_array
        parameters[self.__estimating_parameters] = params
        self.finish(Face.from_array(parameters))
Exemplo n.º 23
0
def construct_chain(configuration_filename, model):
    fitting_settings = None
    with open(configuration_filename) as config:
        fitting_settings = json.load(config)

    fitters = fitting_settings['fitters']

    face_parameters = fitting_settings['input'].get('initial_face', {})

    coefficients = face_parameters.get('coefficients', [])
    directed_light = face_parameters.get('directed_light', (0., 0., 0.))
    ambient_light = face_parameters.get('ambient_light', 0.)
    initial_face = Face(coefficients=coefficients,
                        directed_light=directed_light,
                        ambient_light=ambient_light)

    face_filename = get_datafile_path(fitting_settings['input']['input_image'])
    image = Image.open(face_filename).convert('L')
    original_data = array(image.getdata()).astype('f') / 255
    image_data = original_data.reshape(image.size)[::-1, :].flatten()
    image.close()

    return FittersChain(fitters, image_data, model, initial_face=initial_face)
Exemplo n.º 24
0
 def calculate_reflection(self):
     self.__step = 'reflection'
     self.calculate_centroid()
     self.__reflection = self.__centroid + self.__alpha * \
         (self.__centroid - self.__end)
     self.request_face(Face.from_array(self.__reflection))
Exemplo n.º 25
0
def model():
    view = View()
    face = Face()
    model = Model(view)
    model.face = face
    yield model
Exemplo n.º 26
0
def Face():
    __Face.set_initial_rotation(0, 0)
    yield __Face
    __Face.set_initial_rotation(0, 0)
Exemplo n.º 27
0
args = parser.parse_args()

fitting_settings = None
with open(args.config) as config:
    fitting_settings = json.load(config)

fitters = fitting_settings['fitters']

face_parameters = fitting_settings['input'].get('initial_face', {})

coefficients = face_parameters.get('coefficients', [])
directed_light = face_parameters.get('directed_light', (0., 0., 0.))
ambient_light = face_parameters.get('ambient_light', 0.)
initial_face = Face(coefficients=coefficients,
                    directed_light=directed_light,
                    ambient_light=ambient_light)

model_filename = get_datafile_path(fitting_settings['input']['input_image'])
image = Image.open(model_filename).convert('L')
original_data = array(image.getdata()).astype('f') / 255
image_data = original_data.reshape(image.size)[::-1, :].flatten()
image.close()

MFM.init()
view = View((500, 500))
model = Model(view)
model_input = ModelInput(model)

chain = FittersChain(fitters, image_data, model, initial_face=initial_face)
Exemplo n.º 28
0
 def start(self):
     parameters = self._initial_face.as_array.copy()
     for _ in range(self.__max_loops):
         parameters = self.__iteration(parameters)
     self.finish(Face.from_array(parameters))
Exemplo n.º 29
0
Arquivo: Face.py Projeto: fossabot/mfm
def test_constructor_wrong_coefficients(value):
    with raises(ValueError):
        Face(coefficients=value)
Exemplo n.º 30
0
 def calculate_contraction(self):
     self.__step = 'contraction'
     self.__contraction = self.__centroid + self.__rho * \
         (self.__parameters[-1] - self.__centroid)
     self.request_face(Face.from_array(self.__contraction))
Exemplo n.º 31
0
 def __get_parameter(self, change_on=0):
     value = self.__get_value(change_on, self.__indices[change_on])
     self.__parameters[self.__levels[change_on]] = value
     self.__face = Face.from_array(self.__parameters)
     return self.get_face_deviation(self.__face)
Exemplo n.º 32
0
def test_set_ambient_light():
    face = Face()
    face.ambient_light = 0
    assert allclose(face.ambient_light, 0)
    face.ambient_light = 1
    assert allclose(face.ambient_light, 1)
Exemplo n.º 33
0
def test_set_position():
    face = Face()
    face.position = (0, 0, 0)
    assert allclose(face.position, (0, 0, 0))
    face.position = (1, 1, 1)
    assert allclose(face.position, (1, 1, 1))
Exemplo n.º 34
0
Arquivo: Face.py Projeto: fossabot/mfm
def test_constructor_wrong_vector3d(name, value):
    with raises(ValueError):
        Face(**{name: value})
Exemplo n.º 35
0
 def calculate_expansion(self):
     self.__step = 'expansion'
     self.__expansion = self.__centroid + self.__gamma * \
         (self.__reflection - self.__centroid)
     self.request_face(Face.from_array(self.__expansion))
Exemplo n.º 36
0
Arquivo: Face.py Projeto: fossabot/mfm
def test_constructor():
    assert isinstance(Face(), Face)
Exemplo n.º 37
0
def test_set_scale():
    face = Face()
    face.scale = (2, 2, 2)
    assert allclose(face.scale, (2, 2, 2))
    face.scale = (1, 1, 1)
    assert allclose(face.scale, (1, 1, 1))