Exemplo n.º 1
0
    def evaluate(self,
                 session,
                 data,
                 predictions,
                 loss,
                 official_stdout=False):
        if self.eval_data is None:
            self.eval_data, self.eval_tensors, self.coref_eval_data = data.load_eval_data(
            )

        def _k_to_tag(k):
            if k == -3:
                return "oracle"
            elif k == -2:
                return "actual"
            elif k == -1:
                return "exact"
            elif k == 0:
                return "threshold"
            else:
                return "{}%".format(k)

        # Retrieval evaluators.
        arg_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 30, 40, 50, 80, 100, 120, 150]
        }
        predicate_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70]
        }
        total_loss = 0
        total_num_predicates = 0
        total_gold_predicates = 0
        srl_comp_sents = 0
        srl_predictions = []
        all_gold_predicates = []
        all_guessed_predicates = []
        start_time = time.time()
        sent_id = 0

        # Simple analysis.
        unique_core_role_violations = 0
        continuation_role_violations = 0
        reference_role_violations = 0
        gold_u_violations = 0
        gold_c_violations = 0
        gold_r_violations = 0

        # Go through document-level predictions.
        for i, doc_tensors in enumerate(self.eval_tensors):
            feed_dict = dict(
                zip(data.input_tensors, [
                    pad_batch_tensors(doc_tensors, tn)
                    for tn in data.input_names + data.label_names
                ]))
            predict_names = []
            for tn in data.predict_names:
                if tn in predictions:
                    predict_names.append(tn)
            predict_tensors = [predictions[tn]
                               for tn in predict_names] + [loss]
            predict_tensors = session.run(predict_tensors, feed_dict=feed_dict)
            predict_dict = dict(zip(predict_names + ["loss"], predict_tensors))

            doc_size = len(doc_tensors)
            doc_example = self.coref_eval_data[i]
            sentences = doc_example["sentences"]
            decoded_predictions = inference_utils.srl_decode(
                sentences, predict_dict, data.srl_labels_inv, self.config)

            if "srl" in decoded_predictions:
                srl_predictions.extend(decoded_predictions["srl"])
                # Evaluate retrieval.
                word_offset = 0
                for j in range(len(sentences)):
                    text_length = len(sentences[j])
                    na = predict_dict["num_args"][j]
                    np = predict_dict["num_preds"][j]
                    sent_example = self.eval_data[
                        sent_id]  # sentence, srl, ner
                    gold_args = set([])
                    gold_preds = set([])
                    guessed_preds = set([])
                    for pred, args in sent_example[1].iteritems():
                        filtered_args = [(a[0], a[1]) for a in args
                                         if a[2] not in ["V", "C-V"]]
                        if len(filtered_args) > 0:
                            gold_preds.add((pred, pred))
                            gold_args.update(filtered_args)
                    for pred, args in decoded_predictions["srl"][j].iteritems(
                    ):
                        guessed_preds.add((pred, pred, "V"))
                    all_gold_predicates.append([(p[0], p[1], "V")
                                                for p in gold_preds])
                    all_guessed_predicates.append(guessed_preds)

                    srl_eval_utils.evaluate_retrieval(
                        predict_dict["candidate_starts"][j],
                        predict_dict["candidate_ends"][j],
                        predict_dict["candidate_arg_scores"][j],
                        predict_dict["arg_starts"][j][:na],
                        predict_dict["arg_ends"][j][:na], gold_args,
                        text_length, arg_evaluators)
                    srl_eval_utils.evaluate_retrieval(
                        range(text_length), range(text_length),
                        predict_dict["candidate_pred_scores"][j],
                        predict_dict["predicates"][j][:np],
                        predict_dict["predicates"][j][:np], gold_preds,
                        text_length, predicate_evaluators)

                    # TODO: Move elsewhere.
                    u_violations, c_violations, r_violations = debug_utils.srl_constraint_tracker(
                        decoded_predictions["srl"][j])
                    unique_core_role_violations += u_violations
                    continuation_role_violations += c_violations
                    reference_role_violations += r_violations
                    total_num_predicates += len(
                        decoded_predictions["srl"][j].keys())
                    u_violations, c_violations, r_violations = debug_utils.srl_constraint_tracker(
                        sent_example[1])
                    gold_u_violations += u_violations
                    gold_c_violations += c_violations
                    gold_r_violations += r_violations
                    total_gold_predicates += len(sent_example[1].keys())
                    sent_id += 1
                    word_offset += text_length

            total_loss += predict_dict["loss"]
            if (i + 1) % 50 == 0:
                print("Evaluated {}/{} documents.".format(
                    i + 1, len(self.coref_eval_data)))

        summary_dict = {}
        task_to_f1 = {}  # From task name to F1.
        elapsed_time = time.time() - start_time

        sentences, gold_srl, gold_ner = zip(*self.eval_data)

        # Summarize results, evaluate entire dev set.
        precision, recall, f1, conll_precision, conll_recall, conll_f1, ul_prec, ul_recall, ul_f1, srl_label_mat, comp = (
            srl_eval_utils.compute_srl_f1(sentences, gold_srl, srl_predictions,
                                          self.config["srl_conll_eval_path"]))
        pid_precision, pred_recall, pid_f1, _, _, _, _ = srl_eval_utils.compute_span_f1(
            all_gold_predicates, all_guessed_predicates, "Predicate ID")
        task_to_f1["srl"] = conll_f1
        summary_dict["PAS F1"] = f1
        summary_dict["PAS precision"] = precision
        summary_dict["PAS recall"] = recall
        summary_dict["Unlabeled PAS F1"] = ul_f1
        summary_dict["Unlabeled PAS precision"] = ul_prec
        summary_dict["Unlabeled PAS recall"] = ul_recall
        summary_dict["CoNLL F1"] = conll_f1
        summary_dict["CoNLL precision"] = conll_precision
        summary_dict["CoNLL recall"] = conll_recall
        if total_num_predicates > 0:
            summary_dict[
                "Unique core violations/Predicate"] = 1.0 * unique_core_role_violations / total_num_predicates
            summary_dict[
                "Continuation violations/Predicate"] = 1.0 * continuation_role_violations / total_num_predicates
            summary_dict[
                "Reference violations/Predicate"] = 1.0 * reference_role_violations / total_num_predicates
        print "Completely correct sentences: {}/{}".format(
            comp, 100.0 * comp / len(srl_predictions))

        for k, evaluator in sorted(arg_evaluators.items(),
                                   key=operator.itemgetter(0)):
            tags = [
                "{} {} @ {}".format("Args", t, _k_to_tag(k))
                for t in ("R", "P", "F")
            ]
            results_to_print = []
            for t, v in zip(tags, evaluator.metrics()):
                results_to_print.append("{:<10}: {:.4f}".format(t, v))
                summary_dict[t] = v
            print ", ".join(results_to_print)

        for k, evaluator in sorted(predicate_evaluators.items(),
                                   key=operator.itemgetter(0)):
            tags = [
                "{} {} @ {}".format("Predicates", t, _k_to_tag(k))
                for t in ("R", "P", "F")
            ]
            results_to_print = []
            for t, v in zip(tags, evaluator.metrics()):
                results_to_print.append("{:<10}: {:.4f}".format(t, v))
                summary_dict[t] = v
            print ", ".join(results_to_print)

        if total_num_predicates > 0:
            print("Constraint voilations: U: {} ({}), C: {} ({}), R: {} ({})".
                  format(
                      1.0 * unique_core_role_violations / total_num_predicates,
                      unique_core_role_violations, 1.0 *
                      continuation_role_violations / total_num_predicates,
                      continuation_role_violations,
                      1.0 * reference_role_violations / total_num_predicates,
                      reference_role_violations))
        if total_gold_predicates > 0:
            print(
                "Gold constraint voilations: U: {} ({}), C: {} ({}), R: {} ({})"
                .format(1.0 * gold_u_violations / total_gold_predicates,
                        gold_u_violations,
                        1.0 * gold_c_violations / total_gold_predicates,
                        gold_c_violations,
                        1.0 * gold_r_violations / total_gold_predicates,
                        gold_r_violations))
        #for label_pair, freq in srl_label_mat.most_common():
        #  if label_pair[0] != label_pair[1] and freq > 10:
        #    print ("{}\t{}\t{}".format(label_pair[0], label_pair[1], freq))

        summary_dict["Dev Loss"] = total_loss / len(self.coref_eval_data)
        print "Decoding took {}.".format(
            str(datetime.timedelta(seconds=int(elapsed_time))))
        print "Decoding speed: {}/document, or {}/sentence.".format(
            str(
                datetime.timedelta(seconds=int(elapsed_time /
                                               len(self.coref_eval_data)))),
            str(
                datetime.timedelta(seconds=int(elapsed_time /
                                               len(self.eval_data)))))
        metric_names = self.config["main_metrics"].split("_")
        main_metric = sum([task_to_f1[t]
                           for t in metric_names]) / len(metric_names)
        print "Combined metric ({}): {}".format(self.config["main_metrics"],
                                                main_metric)
        return util.make_summary(summary_dict), main_metric, task_to_f1
Exemplo n.º 2
0
    def evaluate(self,
                 session,
                 data,
                 predictions,
                 loss,
                 official_stdout=False):
        if self.eval_data is None:
            self.eval_data, self.eval_tensors, self.coref_eval_data = data.load_eval_data(
            )

        def _k_to_tag(k):
            if k == -3:
                return "oracle"
            elif k == -2:
                return "actual"
            elif k == -1:
                return "exact"
            elif k == 0:
                return "threshold"
            else:
                return "{}%".format(k)

        # Retrieval evaluators.
        arg_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 30, 40, 50, 80, 100, 120, 150]
        }
        predicate_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70]
        }
        mention_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 10, 20, 30, 40, 50]
        }
        entity_evaluators = {
            k: util.RetrievalEvaluator()
            for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70]
        }

        total_loss = 0
        total_num_predicates = 0
        total_gold_predicates = 0

        srl_comp_sents = 0
        srl_predictions = []
        ner_predictions = []
        rel_predictions = []
        coref_predictions = {}
        coref_evaluator = coref_metrics.CorefEvaluator()
        all_gold_predicates = []
        all_guessed_predicates = []

        start_time = time.time()
        debug_printer = debug_utils.DebugPrinter()

        # Simple analysis.
        unique_core_role_violations = 0
        continuation_role_violations = 0
        reference_role_violations = 0
        gold_u_violations = 0
        gold_c_violations = 0
        gold_r_violations = 0
        json_data = []
        # Global sentence ID.
        rel_sent_id = 0
        srl_sent_id = 0

        for i, doc_tensors in enumerate(self.eval_tensors):
            feed_dict = dict(
                zip(data.input_tensors, [
                    pad_batch_tensors(doc_tensors, tn)
                    for tn in data.input_names + data.label_names
                ]))
            predict_names = []
            for tn in data.predict_names:
                if tn in predictions:
                    predict_names.append(tn)
            predict_tensors = [predictions[tn]
                               for tn in predict_names] + [loss]
            predict_tensors = session.run(predict_tensors, feed_dict=feed_dict)
            predict_dict = dict(zip(predict_names + ["loss"], predict_tensors))
            doc_key = doc_tensors[0]['doc_key']
            json_output = {'doc_key': doc_key}
            doc_size = len(doc_tensors)
            doc_example = self.coref_eval_data[i]
            sentences = doc_example["sentences"]
            decoded_predictions = inference_utils.mtl_decode(
                sentences, predict_dict, data.ner_labels_inv,
                data.rel_labels_inv, self.config)

            # Relation extraction.
            if "rel" in decoded_predictions:
                rel_predictions.extend(decoded_predictions["rel"])
                json_output['relations'] = decoded_predictions["rel"]
                for j in range(len(sentences)):
                    sent_example = self.eval_data[rel_sent_id][3]  # relations
                    text_length = len(sentences[j])
                    ne = predict_dict["num_entities"][j]
                    gold_entities = set([])
                    for rel in sent_example:
                        gold_entities.update([rel[:2], rel[2:4]])
                    rel_sent_id += 1

            if "ner" in decoded_predictions:
                ner_predictions.extend(decoded_predictions["ner"])
                json_output['ner'] = decoded_predictions["ner"]

            if "predicted_clusters" in decoded_predictions:
                gold_clusters = [
                    tuple(tuple(m) for m in gc)
                    for gc in doc_example["clusters"]
                ]
                gold_mentions = set([])
                mention_to_gold = {}
                for gc in gold_clusters:
                    for mention in gc:
                        mention_to_gold[mention] = gc
                        gold_mentions.add(mention)
                coref_evaluator.update(
                    decoded_predictions["predicted_clusters"], gold_clusters,
                    decoded_predictions["mention_to_predicted"],
                    mention_to_gold)
                coref_predictions[doc_example[
                    "doc_key"]] = decoded_predictions["predicted_clusters"]
                json_output['coref'] = decoded_predictions[
                    "predicted_clusters"]

                # Evaluate retrieval.
                doc_text_length = sum([len(s) for s in sentences])
                srl_eval_utils.evaluate_retrieval(
                    predict_dict["candidate_mention_starts"],
                    predict_dict["candidate_mention_ends"],
                    predict_dict["candidate_mention_scores"],
                    predict_dict["mention_starts"],
                    predict_dict["mention_ends"], gold_mentions,
                    doc_text_length, mention_evaluators)

            total_loss += predict_dict["loss"]
            if (i + 1) % 50 == 0:
                print("Evaluated {}/{} documents.".format(
                    i + 1, len(self.coref_eval_data)))
            json_data.append(json_output)
        debug_printer.close()
        outfn = self.config["output_path"]
        print 'writing to ' + outfn
        with open(outfn, 'w') as f:
            for json_line in json_data:
                f.write(json.dumps(json_line, cls=MyEncoder))
                f.write('\n')
Exemplo n.º 3
0
  def evaluate(self, session, data, predictions, loss, official_stdout=False):
    if self.eval_data is None:
      self.eval_data, self.eval_tensors, self.coref_eval_data = data.load_eval_data()

    def _k_to_tag(k):
      if k == -3:
        return "oracle"
      elif k == -2:
        return "actual"
      elif k == -1:
        return "exact"
      elif k == 0:
        return "threshold"
      else:
        return "{}%".format(k)

    # Retrieval evaluators.
    arg_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 30, 40, 50, 80, 100, 120, 150] }
    predicate_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70] }
    mention_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50] }
    entity_evaluators = { k:util.RetrievalEvaluator() for k in [-3, -2, -1, 10, 20, 30, 40, 50, 70] }

    total_loss = 0
    total_num_predicates = 0
    total_gold_predicates = 0

    srl_comp_sents = 0
    srl_predictions = []
    ner_predictions = []
    rel_predictions = []
    coref_predictions = {}
    coref_evaluator = coref_metrics.CorefEvaluator()
    all_gold_predicates = []
    all_guessed_predicates = []

    start_time = time.time()
    debug_printer = debug_utils.DebugPrinter()

    # Simple analysis.
    unique_core_role_violations = 0
    continuation_role_violations = 0
    reference_role_violations = 0
    gold_u_violations = 0
    gold_c_violations = 0
    gold_r_violations = 0

    # Global sentence ID.
    rel_sent_id = 0
    srl_sent_id = 0

    for i, doc_tensors in enumerate(self.eval_tensors):
      feed_dict = dict(list(zip(
          data.input_tensors,
          [pad_batch_tensors(doc_tensors, tn) for tn in data.input_names + data.label_names])))
      predict_names = []
      for tn in data.predict_names:
        if tn in predictions:
          predict_names.append(tn)
      predict_tensors = [predictions[tn] for tn in predict_names] + [loss]
      predict_tensors = session.run(predict_tensors, feed_dict=feed_dict)
      predict_dict = dict(list(zip(predict_names + ["loss"], predict_tensors)))

      doc_size = len(doc_tensors)
      doc_example = self.coref_eval_data[i]
      sentences = doc_example["sentences"]
      decoded_predictions = inference_utils.mtl_decode(
          sentences, predict_dict, data.ner_labels_inv, data.rel_labels_inv,
          self.config)

      # Relation extraction.
      if "rel" in decoded_predictions:
        rel_predictions.extend(decoded_predictions["rel"])
        for j in range(len(sentences)):
          sent_example = self.eval_data[rel_sent_id][3]  # sentence, srl, ner, relations
          text_length = len(sentences[j])
          ne = predict_dict["num_entities"][j]
          gold_entities = set([])
          for rel in sent_example:
            gold_entities.update([rel[:2], rel[2:4]])
          srl_eval_utils.evaluate_retrieval(
              predict_dict["candidate_starts"][j], predict_dict["candidate_ends"][j],
              predict_dict["candidate_entity_scores"][j], predict_dict["entity_starts"][j][:ne],
              predict_dict["entity_ends"][j][:ne], gold_entities, text_length, entity_evaluators)
          rel_sent_id += 1


      if "ner" in decoded_predictions:
        ner_predictions.extend(decoded_predictions["ner"])

      if "predicted_clusters" in decoded_predictions:
        gold_clusters = [tuple(tuple(m) for m in gc) for gc in doc_example["clusters"]]
        gold_mentions = set([])
        mention_to_gold = {}
        for gc in gold_clusters:
          for mention in gc:
            mention_to_gold[mention] = gc
            gold_mentions.add(mention)
        coref_evaluator.update(decoded_predictions["predicted_clusters"], gold_clusters, decoded_predictions["mention_to_predicted"],
                               mention_to_gold)
        coref_predictions[doc_example["doc_key"]] = decoded_predictions["predicted_clusters"]
        
        # Evaluate retrieval.
        doc_text_length = sum([len(s) for s in sentences])
        srl_eval_utils.evaluate_retrieval(
            predict_dict["candidate_mention_starts"], predict_dict["candidate_mention_ends"],
            predict_dict["candidate_mention_scores"], predict_dict["mention_starts"], predict_dict["mention_ends"],
            gold_mentions, doc_text_length, mention_evaluators)

      total_loss += predict_dict["loss"]
      if (i + 1) % 50 == 0:
        print(("Evaluated {}/{} documents.".format(i + 1, len(self.coref_eval_data))))

    debug_printer.close()
    summary_dict = {}
    task_to_f1 = {}  # From task name to F1.
    elapsed_time = time.time() - start_time

    sentences, gold_srl, gold_ner, gold_relations = list(zip(*self.eval_data))

    # Summarize results.
    if self.config["relation_weight"] > 0:
      precision, recall, f1 = (
          srl_eval_utils.compute_relation_f1(sentences, gold_relations, rel_predictions))
      task_to_f1["relations"] = f1
      summary_dict["Relation F1"] = f1
      summary_dict["Relation precision"] = precision
      summary_dict["Relation recall"] = recall
      for k, evaluator in sorted(list(entity_evaluators.items()), key=operator.itemgetter(0)):
        tags = ["{} {} @ {}".format("Entities", t, _k_to_tag(k)) for t in ("R", "P", "F")]
        results_to_print = []
        for t, v in zip(tags, evaluator.metrics()):
          results_to_print.append("{:<10}: {:.4f}".format(t, v))
          summary_dict[t] = v
        print(", ".join(results_to_print))
  

    if self.config["ner_weight"] > 0:
      ner_precision, ner_recall, ner_f1, ul_ner_prec, ul_ner_recall, ul_ner_f1, ner_label_mat = (
          srl_eval_utils.compute_span_f1(gold_ner, ner_predictions, "NER"))
      summary_dict["NER F1"] = ner_f1
      summary_dict["NER precision"] = ner_precision
      summary_dict["NER recall"] = ner_recall
      summary_dict["Unlabeled NER F1"] = ul_ner_f1
      summary_dict["Unlabeled NER precision"] = ul_ner_prec
      summary_dict["Unlabeled NER recall"] = ul_ner_recall

      # Write NER prediction to IOB format and run official eval script.
      srl_eval_utils.print_to_iob2(sentences, gold_ner, ner_predictions, self.config["ner_conll_eval_path"])
      task_to_f1["ner"] = ner_f1
      #for label_pair, freq in ner_label_mat.most_common():
      #  if label_pair[0] != label_pair[1] and freq > 10:
      #    print ("{}\t{}\t{}".format(label_pair[0], label_pair[1], freq))


    if self.config["coref_weight"] > 0:
      #conll_results = conll.evaluate_conll(self.config["conll_eval_path"], coref_predictions, official_stdout)
      #coref_conll_f1 = sum(results["f"] for results in conll_results.values()) / len(conll_results)
      #summary_dict["Average F1 (conll)"] = coref_conll_f1
      #print "Average F1 (conll): {:.2f}%".format(coref_conll_f1)

      p,r,f = coref_evaluator.get_prf()
      summary_dict["Average Coref F1 (py)"] = f
      print("Average F1 (py): {:.2f}%".format(f * 100))
      summary_dict["Average Coref precision (py)"] = p
      print("Average precision (py): {:.2f}%".format(p * 100))
      summary_dict["Average Coref recall (py)"] = r
      print("Average recall (py): {:.2f}%".format(r * 100))

      task_to_f1["coref"] = f * 100  # coref_conll_f1
      for k, evaluator in sorted(list(mention_evaluators.items()), key=operator.itemgetter(0)):
        tags = ["{} {} @ {}".format("Mentions", t, _k_to_tag(k)) for t in ("R", "P", "F")]
        results_to_print = []
        for t, v in zip(tags, evaluator.metrics()):
          results_to_print.append("{:<10}: {:.4f}".format(t, v))
          summary_dict[t] = v
        print(", ".join(results_to_print))

    summary_dict["Dev Loss"] = total_loss / len(self.coref_eval_data)

    print("Decoding took {}.".format(str(datetime.timedelta(seconds=int(elapsed_time)))))
    print("Decoding speed: {}/document, or {}/sentence.".format(
        str(datetime.timedelta(seconds=int(elapsed_time / len(self.coref_eval_data)))),
        str(datetime.timedelta(seconds=int(elapsed_time / len(self.eval_data))))
    ))

    metric_names = self.config["main_metrics"].split("_")
    main_metric = sum([task_to_f1[t] for t in metric_names]) / len(metric_names)
    print("Combined metric ({}): {}".format(self.config["main_metrics"], main_metric))

    return util.make_summary(summary_dict), main_metric, task_to_f1