Exemplo n.º 1
0
 def from_params(cls, vocab: Vocabulary,
                 params: Params) -> 'ElmoTokenEmbedder':  # type: ignore
     # pylint: disable=arguments-differ
     params.add_file_to_archive('options_file')
     params.add_file_to_archive('weight_file')
     options_file = params.pop('options_file')
     weight_file = params.pop('weight_file')
     requires_grad = params.pop('requires_grad', False)
     do_layer_norm = params.pop_bool('do_layer_norm', False)
     dropout = params.pop_float("dropout", 0.5)
     namespace_to_cache = params.pop("namespace_to_cache", None)
     if namespace_to_cache is not None:
         vocab_to_cache = list(
             vocab.get_token_to_index_vocabulary(namespace_to_cache).keys())
     else:
         vocab_to_cache = None
     projection_dim = params.pop_int("projection_dim", None)
     params.assert_empty(cls.__name__)
     return cls(options_file=options_file,
                weight_file=weight_file,
                do_layer_norm=do_layer_norm,
                dropout=dropout,
                requires_grad=requires_grad,
                projection_dim=projection_dim,
                vocab_to_cache=vocab_to_cache)
Exemplo n.º 2
0
 def from_params(self, params: Params) -> PytorchSeq2SeqWrapper:
     if not params.pop_bool('batch_first', True):
         raise ConfigurationError(
             "Our encoder semantics assumes batch is always first!")
     if self._module_class in self.PYTORCH_MODELS:
         params['batch_first'] = True
     module = self._module_class(**params.as_dict())
     return PytorchSeq2SeqWrapper(module)
    def from_params(cls, vocab: Vocabulary, params: Params) -> 'BiattentiveClassificationNetwork':  # type: ignore
        # pylint: disable=arguments-differ
        embedder_params = params.pop("text_field_embedder")
        text_field_embedder = TextFieldEmbedder.from_params(vocab=vocab, params=embedder_params)
        embedding_dropout = params.pop("embedding_dropout")
        pre_encode_feedforward = FeedForward.from_params(params.pop("pre_encode_feedforward"))
        encoder = Seq2SeqEncoder.from_params(params.pop("encoder"))
        integrator = Seq2SeqEncoder.from_params(params.pop("integrator"))
        integrator_dropout = params.pop("integrator_dropout")

        output_layer_params = params.pop("output_layer")
        if "activations" in output_layer_params:
            output_layer = FeedForward.from_params(output_layer_params)
        else:
            output_layer = Maxout.from_params(output_layer_params)

        elmo = params.pop("elmo", None)
        if elmo is not None:
            elmo = Elmo.from_params(elmo)
        use_input_elmo = params.pop_bool("use_input_elmo", False)
        use_integrator_output_elmo = params.pop_bool("use_integrator_output_elmo", False)

        initializer = InitializerApplicator.from_params(params.pop('initializer', []))
        regularizer = RegularizerApplicator.from_params(params.pop('regularizer', []))
        params.assert_empty(cls.__name__)

        return cls(vocab=vocab,
                   text_field_embedder=text_field_embedder,
                   embedding_dropout=embedding_dropout,
                   pre_encode_feedforward=pre_encode_feedforward,
                   encoder=encoder,
                   integrator=integrator,
                   integrator_dropout=integrator_dropout,
                   output_layer=output_layer,
                   elmo=elmo,
                   use_input_elmo=use_input_elmo,
                   use_integrator_output_elmo=use_integrator_output_elmo,
                   initializer=initializer,
                   regularizer=regularizer)
    def from_params(
            cls, vocab: Vocabulary,
            params: Params) -> 'BasicTextFieldEmbedder':  # type: ignore
        # pylint: disable=arguments-differ,bad-super-call

        # The original `from_params` for this class was designed in a way that didn't agree
        # with the constructor. The constructor wants a 'token_embedders' parameter that is a
        # `Dict[str, TokenEmbedder]`, but the original `from_params` implementation expected those
        # key-value pairs to be top-level in the params object.
        #
        # This breaks our 'configuration wizard' and configuration checks. Hence, going forward,
        # the params need a 'token_embedders' key so that they line up with what the constructor wants.
        # For now, the old behavior is still supported, but produces a DeprecationWarning.

        embedder_to_indexer_map = params.pop("embedder_to_indexer_map", None)
        if embedder_to_indexer_map is not None:
            embedder_to_indexer_map = embedder_to_indexer_map.as_dict(
                quiet=True)
        allow_unmatched_keys = params.pop_bool("allow_unmatched_keys", False)

        token_embedder_params = params.pop('token_embedders', None)

        if token_embedder_params is not None:
            # New way: explicitly specified, so use it.
            token_embedders = {
                name: TokenEmbedder.from_params(subparams, vocab=vocab)
                for name, subparams in token_embedder_params.items()
            }

        else:
            # Warn that the original behavior is deprecated
            warnings.warn(
                DeprecationWarning(
                    "the token embedders for BasicTextFieldEmbedder should now "
                    "be specified as a dict under the 'token_embedders' key, "
                    "not as top-level key-value pairs"))

            token_embedders = {}
            keys = list(params.keys())
            for key in keys:
                embedder_params = params.pop(key)
                token_embedders[key] = TokenEmbedder.from_params(
                    vocab=vocab, params=embedder_params)

        params.assert_empty(cls.__name__)
        return cls(token_embedders, embedder_to_indexer_map,
                   allow_unmatched_keys)
Exemplo n.º 5
0
    def from_params(cls, params: Params) -> 'Elmo':
        # Add files to archive
        params.add_file_to_archive('options_file')
        params.add_file_to_archive('weight_file')

        options_file = params.pop('options_file')
        weight_file = params.pop('weight_file')
        requires_grad = params.pop('requires_grad', False)
        num_output_representations = params.pop('num_output_representations')
        do_layer_norm = params.pop_bool('do_layer_norm', False)
        dropout = params.pop_float('dropout', 0.5)
        params.assert_empty(cls.__name__)

        return cls(options_file=options_file,
                   weight_file=weight_file,
                   num_output_representations=num_output_representations,
                   requires_grad=requires_grad,
                   do_layer_norm=do_layer_norm,
                   dropout=dropout)
Exemplo n.º 6
0
def train_model(params: Params,
                serialization_dir: str,
                file_friendly_logging: bool = False,
                recover: bool = False) -> Model:
    """
    Trains the model specified in the given :class:`Params` object, using the data and training
    parameters also specified in that object, and saves the results in ``serialization_dir``.

    Parameters
    ----------
    params : ``Params``
        A parameter object specifying an AllenNLP Experiment.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    recover : ``bool``, optional (default=False)
        If ``True``, we will try to recover a training run from an existing serialization
        directory.  This is only intended for use when something actually crashed during the middle
        of a run.  For continuing training a model on new data, see the ``fine-tune`` command.

    Returns
    -------
    best_model: ``Model``
        The model with the best epoch weights.
    """
    prepare_environment(params)

    create_serialization_dir(params, serialization_dir, recover)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    check_for_gpu(params.get('trainer').get('cuda_device', -1))

    params.to_file(os.path.join(serialization_dir, CONFIG_NAME))

    all_datasets = datasets_from_params(params)
    datasets_for_vocab_creation = set(
        params.pop("datasets_for_vocab_creation", all_datasets))

    for dataset in datasets_for_vocab_creation:
        if dataset not in all_datasets:
            raise ConfigurationError(
                f"invalid 'dataset_for_vocab_creation' {dataset}")

    logger.info(
        "From dataset instances, %s will be considered for vocabulary creation.",
        ", ".join(datasets_for_vocab_creation))
    vocab = Vocabulary.from_params(
        params.pop("vocabulary", {}),
        (instance for key, dataset in all_datasets.items()
         for instance in dataset if key in datasets_for_vocab_creation))

    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    model = Model.from_params(vocab=vocab, params=params.pop('model'))
    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(vocab)
    validation_iterator_params = params.pop("validation_iterator", None)
    if validation_iterator_params:
        validation_iterator = DataIterator.from_params(
            validation_iterator_params)
        validation_iterator.index_with(vocab)
    else:
        validation_iterator = None

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params,
                                  validation_iterator=validation_iterator)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')

    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info(
                "Training interrupted by the user. Attempting to create "
                "a model archive using the current best epoch weights.")
            archive_model(serialization_dir,
                          files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    logger.info("Loading the best epoch weights.")
    best_model_state_path = os.path.join(serialization_dir, 'best.th')
    best_model_state = torch.load(best_model_state_path)
    best_model = model
    best_model.load_state_dict(best_model_state)

    if test_data and evaluate_on_test:
        logger.info(
            "The model will be evaluated using the best epoch weights.")
        test_metrics = evaluate(
            best_model,
            test_data,
            validation_iterator or iterator,
            cuda_device=trainer._cuda_devices[0]  # pylint: disable=protected-access
        )
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info(
            "To evaluate on the test set after training, pass the "
            "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"),
              "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return best_model
Exemplo n.º 7
0
def fine_tune_model(model: Model,
                    params: Params,
                    serialization_dir: str,
                    extend_vocab: bool = False,
                    file_friendly_logging: bool = False) -> Model:
    """
    Fine tunes the given model, using a set of parameters that is largely identical to those used
    for :func:`~allennlp.commands.train.train_model`, except that the ``model`` section is ignored,
    if it is present (as we are already given a ``Model`` here).

    The main difference between the logic done here and the logic done in ``train_model`` is that
    here we do not worry about vocabulary construction or creating the model object.  Everything
    else is the same.

    Parameters
    ----------
    archive : ``Archive``
        A saved model archive that is the result of running the ``train`` command.
    train_data_path : ``str``
        Path to the training data to use for fine-tuning.
    serialization_dir : ``str``
        The directory in which to save results and logs.
    validation_data_path : ``str``, optional
        Path to the validation data to use while fine-tuning.
    extend_vocab: ``bool``, optional (default=False)
        If ``True``, we use the new instances to extend your vocabulary.
    file_friendly_logging : ``bool``, optional (default=False)
        If ``True``, we add newlines to tqdm output, even on an interactive terminal, and we slow
        down tqdm's output to only once every 10 seconds.
    """
    prepare_environment(params)
    if os.path.exists(serialization_dir) and os.listdir(serialization_dir):
        raise ConfigurationError(f"Serialization directory ({serialization_dir}) "
                                 f"already exists and is not empty.")

    os.makedirs(serialization_dir, exist_ok=True)
    prepare_global_logging(serialization_dir, file_friendly_logging)

    serialization_params = deepcopy(params).as_dict(quiet=True)
    with open(os.path.join(serialization_dir, CONFIG_NAME), "w") as param_file:
        json.dump(serialization_params, param_file, indent=4)

    if params.pop('model', None):
        logger.warning("You passed parameters for the model in your configuration file, but we "
                       "are ignoring them, using instead the model parameters in the archive.")

    vocabulary_params = params.pop('vocabulary', {})
    if vocabulary_params.get('directory_path', None):
        logger.warning("You passed `directory_path` in parameters for the vocabulary in "
                       "your configuration file, but it will be ignored. ")

    all_datasets = datasets_from_params(params)
    vocab = model.vocab

    if extend_vocab:
        datasets_for_vocab_creation = set(params.pop("datasets_for_vocab_creation", all_datasets))

        for dataset in datasets_for_vocab_creation:
            if dataset not in all_datasets:
                raise ConfigurationError(f"invalid 'dataset_for_vocab_creation' {dataset}")

        logger.info("Extending model vocabulary using %s data.", ", ".join(datasets_for_vocab_creation))
        vocab.extend_from_instances(vocabulary_params,
                                    (instance for key, dataset in all_datasets.items()
                                     for instance in dataset
                                     if key in datasets_for_vocab_creation))

    vocab.save_to_files(os.path.join(serialization_dir, "vocabulary"))

    iterator = DataIterator.from_params(params.pop("iterator"))
    iterator.index_with(model.vocab)

    train_data = all_datasets['train']
    validation_data = all_datasets.get('validation')
    test_data = all_datasets.get('test')

    trainer_params = params.pop("trainer")
    no_grad_regexes = trainer_params.pop("no_grad", ())
    for name, parameter in model.named_parameters():
        if any(re.search(regex, name) for regex in no_grad_regexes):
            parameter.requires_grad_(False)

    frozen_parameter_names, tunable_parameter_names = \
                   get_frozen_and_tunable_parameter_names(model)
    logger.info("Following parameters are Frozen  (without gradient):")
    for name in frozen_parameter_names:
        logger.info(name)
    logger.info("Following parameters are Tunable (with gradient):")
    for name in tunable_parameter_names:
        logger.info(name)

    trainer = Trainer.from_params(model,
                                  serialization_dir,
                                  iterator,
                                  train_data,
                                  validation_data,
                                  trainer_params)

    evaluate_on_test = params.pop_bool("evaluate_on_test", False)
    params.assert_empty('base train command')
    try:
        metrics = trainer.train()
    except KeyboardInterrupt:
        # if we have completed an epoch, try to create a model archive.
        if os.path.exists(os.path.join(serialization_dir, _DEFAULT_WEIGHTS)):
            logging.info("Fine-tuning interrupted by the user. Attempting to create "
                         "a model archive using the current best epoch weights.")
            archive_model(serialization_dir, files_to_archive=params.files_to_archive)
        raise

    # Now tar up results
    archive_model(serialization_dir, files_to_archive=params.files_to_archive)

    if test_data and evaluate_on_test:
        test_metrics = evaluate(model, test_data, iterator, cuda_device=trainer._cuda_devices[0])  # pylint: disable=protected-access
        for key, value in test_metrics.items():
            metrics["test_" + key] = value

    elif test_data:
        logger.info("To evaluate on the test set after training, pass the "
                    "'evaluate_on_test' flag, or use the 'allennlp evaluate' command.")

    metrics_json = json.dumps(metrics, indent=2)
    with open(os.path.join(serialization_dir, "metrics.json"), "w") as metrics_file:
        metrics_file.write(metrics_json)
    logger.info("Metrics: %s", metrics_json)

    return model
Exemplo n.º 8
0
    def from_params(cls, vocab: Vocabulary,
                    params: Params) -> 'Embedding':  # type: ignore
        """
        We need the vocabulary here to know how many items we need to embed, and we look for a
        ``vocab_namespace`` key in the parameter dictionary to know which vocabulary to use.  If
        you know beforehand exactly how many embeddings you need, or aren't using a vocabulary
        mapping for the things getting embedded here, then you can pass in the ``num_embeddings``
        key directly, and the vocabulary will be ignored.

        In the configuration file, a file containing pretrained embeddings can be specified
        using the parameter ``"pretrained_file"``.
        It can be the path to a local file or an URL of a (cached) remote file.
        Two formats are supported:

            * hdf5 file - containing an embedding matrix in the form of a torch.Tensor;

            * text file - an utf-8 encoded text file with space separated fields::

                    [word] [dim 1] [dim 2] ...

              The text file can eventually be compressed with gzip, bz2, lzma or zip.
              You can even select a single file inside an archive containing multiple files
              using the URI::

                    "(archive_uri)#file_path_inside_the_archive"

              where ``archive_uri`` can be a file system path or a URL. For example::

                    "(http://nlp.stanford.edu/data/glove.twitter.27B.zip)#glove.twitter.27B.200d.txt"
        """
        # pylint: disable=arguments-differ
        num_embeddings = params.pop_int('num_embeddings', None)
        vocab_namespace = params.pop("vocab_namespace", "tokens")
        if num_embeddings is None:
            num_embeddings = vocab.get_vocab_size(vocab_namespace)
        embedding_dim = params.pop_int('embedding_dim')
        pretrained_file = params.pop("pretrained_file", None)
        projection_dim = params.pop_int("projection_dim", None)
        trainable = params.pop_bool("trainable", True)
        padding_index = params.pop_int('padding_index', None)
        max_norm = params.pop_float('max_norm', None)
        norm_type = params.pop_float('norm_type', 2.)
        scale_grad_by_freq = params.pop_bool('scale_grad_by_freq', False)
        sparse = params.pop_bool('sparse', False)
        params.assert_empty(cls.__name__)

        if pretrained_file:
            # If we're loading a saved model, we don't want to actually read a pre-trained
            # embedding file - the embeddings will just be in our saved weights, and we might not
            # have the original embedding file anymore, anyway.
            weight = _read_pretrained_embeddings_file(pretrained_file,
                                                      embedding_dim, vocab,
                                                      vocab_namespace)
        else:
            weight = None

        return cls(num_embeddings=num_embeddings,
                   embedding_dim=embedding_dim,
                   projection_dim=projection_dim,
                   weight=weight,
                   padding_index=padding_index,
                   trainable=trainable,
                   max_norm=max_norm,
                   norm_type=norm_type,
                   scale_grad_by_freq=scale_grad_by_freq,
                   sparse=sparse)