Exemplo n.º 1
0
def main():
    global args, best_loss
    args = parser.parse_args()

    dataset_configs = get_configs(args.dataset)

    num_class = dataset_configs['num_class']
    stpp_configs = tuple(dataset_configs['stpp'])
    sampling_configs = dataset_configs['sampling']

    model = SSN(num_class,
                args.num_aug_segments,
                args.num_body_segments,
                args.num_aug_segments,
                args.modality,
                base_model=args.arch,
                dropout=args.dropout,
                stpp_cfg=stpp_configs,
                bn_mode=args.bn_mode)

    if args.init_weights:
        if os.path.isfile(args.init_weights):
            print(("=> loading pretrained weigths '{}'".format(
                args.init_weights)))
            wd = torch.load(args.init_weights)
            model.base_model.load_state_dict(wd['state_dict'])
            print(
                ("=> loaded init weights from '{}'".format(args.init_weights)))
        else:
            print(
                ("=> no weights file found at '{}'".format(args.init_weights)))
    elif args.kinetics_pretrain:
        model_url = dataset_configs['kinetics_pretrain'][args.arch][
            args.modality]
        model.base_model.load_state_dict(
            model_zoo.load_url(model_url)['state_dict'])
        print(("=> loaded init weights from '{}'".format(model_url)))
    else:
        # standard ImageNet pretraining
        if args.modality == 'Flow':
            model_url = dataset_configs['flow_init'][args.arch]
            model.base_model.load_state_dict(
                model_zoo.load_url(model_url)['state_dict'])
            print(("=> loaded flow init weights from '{}'".format(model_url)))

    crop_size = model.crop_size
    scale_size = model.scale_size
    input_mean = model.input_mean
    input_std = model.input_std
    policies = model.get_optim_policies()
    train_augmentation = model.get_augmentation()

    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()

    if args.resume:
        if os.path.isfile(args.resume):
            print(("=> loading checkpoint '{}'".format(args.resume)))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            print(("=> loaded checkpoint '{}' (epoch {})".format(
                args.evaluate, checkpoint['epoch'])))
        else:
            print(("=> no checkpoint found at '{}'".format(args.resume)))

    cudnn.benchmark = True
    pin_memory = (args.modality == 'RGB')

    # Data loading code
    if args.modality != 'RGBDiff':
        normalize = GroupNormalize(input_mean, input_std)
    else:
        normalize = IdentityTransform()

    if args.modality == 'RGB':
        data_length = 1
    elif args.modality in ['Flow', 'RGBDiff']:
        data_length = 5
    else:
        raise ValueError("unknown modality {}".format(args.modality))

    train_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['train_list'])
    val_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['val_list'])
    train_loader = torch.utils.data.DataLoader(
        SSNDataSet(
            "",
            train_prop_file,
            epoch_multiplier=args.training_epoch_multiplier,
            new_length=data_length,
            modality=args.modality,
            exclude_empty=True,
            **sampling_configs,
            aug_seg=args.num_aug_segments,
            body_seg=args.num_body_segments,
            image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"]
            else args.flow_prefix + "{}_{:05d}.jpg",
            transform=torchvision.transforms.Compose([
                train_augmentation,
                Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
                ToTorchFormatTensor(
                    div=(args.arch not in ['BNInception', 'InceptionV3'])),
                normalize,
            ])),
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True)  # in training we drop the last incomplete minibatch

    val_loader = torch.utils.data.DataLoader(SSNDataSet(
        "",
        val_prop_file,
        new_length=data_length,
        modality=args.modality,
        exclude_empty=True,
        **sampling_configs,
        aug_seg=args.num_aug_segments,
        body_seg=args.num_body_segments,
        image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"] else
        args.flow_prefix + "{}_{:05d}.jpg",
        random_shift=False,
        transform=torchvision.transforms.Compose([
            GroupScale(int(scale_size)),
            GroupCenterCrop(crop_size),
            Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
            ToTorchFormatTensor(
                div=(args.arch not in ['BNInception', 'InceptionV3'])),
            normalize,
        ]),
        reg_stats=train_loader.dataset.stats),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=pin_memory)

    activity_criterion = torch.nn.CrossEntropyLoss().cuda()
    completeness_criterion = CompletenessLoss().cuda()
    regression_criterion = ClassWiseRegressionLoss().cuda()

    for group in policies:
        print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
            group['name'], len(group['params']), group['lr_mult'],
            group['decay_mult'])))

    optimizer = torch.optim.SGD(policies,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.evaluate:
        validate(val_loader, model, activity_criterion, completeness_criterion,
                 regression_criterion, 0)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args.lr_steps)

        # train for one epoch
        train(train_loader, model, activity_criterion, completeness_criterion,
              regression_criterion, optimizer, epoch)

        # evaluate on validation set
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, activity_criterion,
                            completeness_criterion, regression_criterion,
                            (epoch + 1) * len(train_loader))

            # remember best prec@1 and save checkpoint
            is_best = loss < best_loss
            best_loss = min(loss, best_loss)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'reg_stats': torch.from_numpy(train_loader.dataset.stats)
                },
                is_best,
                foldername=args.save_path,
                filename="checkpoint_{}.pth".format(epoch))
            print('======================================================')
            print(epoch, is_best, loss, best_loss)
            print('======================================================')
Exemplo n.º 2
0
def main():
    global args, best_loss
    args = parser.parse_args()
    dataset_configs = get_actionness_configs(args.dataset)
    sampling_configs = dataset_configs["sampling"]
    num_class = dataset_configs["num_class"]
    args.dropout = 0.8
    if args.modality == "RGB":
        data_length = 1
    elif args.modality in ["Flow", "RGBDiff"]:
        data_length = 5
    else:
        raise ValueError("unknown modality {}".format(args.modality))

    model = BinaryClassifier(
        num_class,
        args.num_body_segments,
        args.modality,
        new_length=data_length,
        base_model=args.arch,
        dropout=args.dropout,
        bn_mode=args.bn_mode,
    )

    if args.init_weights:
        if os.path.isfile(args.init_weights):
            print(("=> loading pretrained weights from '{}'".format(
                args.init_weights)))
            wd = torch.load(args.init_weights)
            model.base_model.load_state_dict(wd["state_dict"])
            print(
                ("=> no weights file found at '{}'".format(args.init_weights)))
        else:
            print(
                ("=> no weights file found at '{}'".format(args.init_weights)))
    elif args.kinetics_pretrain:
        model_url = dataset_configs["kinetics_pretrain"][args.arch][
            args.modality]
        model.base_model.load_state_dict(
            model_zoo.load_url(model_url)["state_dict"])
        print(("=> loaded init weights from '{}'".format(model_url)))
    else:
        # standard ImageNet pretraining
        if args.modality == "Flow":
            model_url = dataset_configs["flow_init"][args.arch]
            model.base_model.load_state_dict(
                model_zoo.load_url(model_url)["state_dict"])
            print(("=> loaded flow init weights from '{}'".format(model_url)))

    crop_size = model.crop_size
    scale_size = model.scale_size
    input_mean = model.input_mean
    input_std = model.input_std
    policies = model.get_optim_policies()
    train_augmentation = model.get_augmentation()

    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()

    cudnn.benchmark = True
    pin_memory = args.modality == "RGB"

    # Data loading code
    if args.modality != "RGBDiff":
        normalize = GroupNormalize(input_mean, input_std)
    else:
        normalize = IdentityTransform()

    train_prop_file = "data/{}_proposal_list.txt".format(
        dataset_configs["train_list"])
    val_prop_file = "data/{}_proposal_list.txt".format(
        dataset_configs["test_list"])
    train_loader = torch.utils.data.DataLoader(
        BinaryDataSet(
            "",
            train_prop_file,
            new_length=data_length,
            modality=args.modality,
            exclude_empty=True,
            body_seg=args.num_body_segments,
            image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"]
            else args.flow_prefix + "{}_{:05d}.jpg",
            transform=torchvision.transforms.Compose([
                train_augmentation,
                Stack(roll=(args.arch in ["BNInception", "InceptionV3"])),
                ToTorchFormatTensor(
                    div=(args.arch not in ["BNInception", "InceptionV3"])),
                normalize,
            ]),
        ),
        batch_size=4,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True,
    )

    val_loader = torch.utils.data.DataLoader(
        BinaryDataSet(
            "",
            val_prop_file,
            new_length=data_length,
            modality=args.modality,
            exclude_empty=True,
            body_seg=args.num_body_segments,
            image_tmpl="img_{:05}.jpg" if args.modality in ["RGB", "RGBDiff"]
            else args.flow_prefix + "{}_{:05d}.jpg",
            random_shift=False,
            fg_ratio=6,
            bg_ratio=6,
            transform=torchvision.transforms.Compose([
                GroupScale(int(scale_size)),
                GroupCenterCrop(crop_size),
                Stack(roll=(args.arch in ["BNInception", "InceptionV3"])),
                ToTorchFormatTensor(
                    div=(args.arch not in ["BNInception", "InceptionV3"])),
                normalize,
            ]),
        ),
        batch_size=4,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=pin_memory,
    )

    binary_criterion = torch.nn.CrossEntropyLoss().cuda()

    for group in policies:
        print(("group: {} has {} params, lr_mult: {}, decay_mult: {}".format(
            group["name"],
            len(group["params"]),
            group["lr_mult"],
            group["decay_mult"],
        )))

    optimizer = torch.optim.SGD(policies,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args.lr_steps)
        # train for one epoch
        train(train_loader, model, binary_criterion, optimizer, epoch)

        # evaluate on validation list
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, binary_criterion,
                            (epoch + 1) * len(train_loader))

            # remember best prec@1 and save checkpoint
            is_best = loss < best_loss
            best_loss = min(loss, best_loss)
            save_checkpoint(
                {
                    "epoch": epoch + 1,
                    "arch": args.arch,
                    "state_dict": model.state_dict(),
                    "best_loss": best_loss,
                },
                is_best,
            )
def main():
    global args, best_loss
    args = parser.parse_args()

    dataset_configs = get_configs(args.dataset)

    num_class = dataset_configs['num_class']
    stpp_configs = tuple(dataset_configs['stpp'])  #TODO
    sampling_configs = dataset_configs['sampling']

    base_model = 'p3d'
    model = SSN(num_class,
                args.num_aug_segments,
                args.num_body_segments,
                args.num_aug_segments,
                args.modality,
                base_model=base_model,
                dropout=args.dropout,
                stpp_cfg=stpp_configs,
                bn_mode=args.bn_mode)
    weights_file = 'ssn_activitynet1.2_BNInception_rgb_epoch-2_checkpoint.pth.tar'
    weights = torch.load(weights_file)['state_dict']
    weights = {'.'.join(k.split('.')[1:]): v for k, v in list(weights.items())}
    model.load_state_dict(weights)

    crop_size = model.crop_size
    scale_size = model.scale_size
    input_mean = model.input_mean
    input_std = model.input_std
    policies = model.get_optim_policies()
    train_augmentation = model.get_augmentation()

    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()

    cudnn.benchmark = True
    pin_memory = (args.modality == 'RGB')

    # Data loading code
    if args.modality != 'RGBDiff':
        normalize = GroupNormalize(input_mean, input_std)
    else:
        normalize = IdentityTransform()

    if args.modality == 'RGB':
        data_length = 1
    elif args.modality in ['Flow', 'RGBDiff']:
        data_length = 5
    else:
        raise ValueError("unknown modality {}".format(args.modality))

    train_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['train_list'])
    val_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['test_list'])
    train_loader = torch.utils.data.DataLoader(
        SSNDataSet(
            "",
            train_prop_file,
            epoch_multiplier=args.training_epoch_multiplier,
            new_length=data_length,
            modality=args.modality,
            exclude_empty=True,
            **sampling_configs,
            aug_seg=args.num_aug_segments,
            body_seg=args.num_body_segments,
            image_tmpl="{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"] else
            args.flow_prefix + "{}_{:05d}.jpg",
            transform=torchvision.transforms.Compose([
                train_augmentation,
                Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
                ToTorchFormatTensor(
                    div=(args.arch not in ['BNInception', 'InceptionV3'])),
                normalize,
            ])),
        batch_size=args.batch_size,
        shuffle=True,
        num_workers=args.workers,
        pin_memory=pin_memory,
        drop_last=True)  # in training we drop the last incomplete minibatch

    val_loader = torch.utils.data.DataLoader(SSNDataSet(
        "",
        val_prop_file,
        new_length=data_length,
        modality=args.modality,
        exclude_empty=True,
        **sampling_configs,
        aug_seg=args.num_aug_segments,
        body_seg=args.num_body_segments,
        image_tmpl="{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"] else
        args.flow_prefix + "{}_{:05d}.jpg",
        random_shift=False,
        transform=torchvision.transforms.Compose([
            GroupScale(int(scale_size)),
            GroupCenterCrop(crop_size),
            Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
            ToTorchFormatTensor(
                div=(args.arch not in ['BNInception', 'InceptionV3'])),
            normalize,
        ]),
        reg_stats=train_loader.dataset.stats),
                                             batch_size=args.batch_size,
                                             shuffle=False,
                                             num_workers=args.workers,
                                             pin_memory=pin_memory)

    activity_criterion = torch.nn.CrossEntropyLoss().cuda()
    completeness_criterion = CompletenessLoss().cuda()
    regression_criterion = ClassWiseRegressionLoss().cuda()

    for group in policies:
        print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
            group['name'], len(group['params']), group['lr_mult'],
            group['decay_mult'])))

    optimizer = torch.optim.SGD(policies,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.evaluate:
        validate(val_loader, model, activity_criterion, completeness_criterion,
                 regression_criterion, 0)
        return

#   exit()

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args.lr_steps)

        # train for one epoch
        train(train_loader, model, activity_criterion, completeness_criterion,
              regression_criterion, optimizer, epoch)

        # evaluate on validation set
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, activity_criterion,
                            completeness_criterion, regression_criterion,
                            (epoch + 1) * len(train_loader))

            # remember best prec@1 and save checkpoint
            is_best = loss < best_loss
            best_loss = min(loss, best_loss)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.arch,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                    'reg_stats': torch.from_numpy(train_loader.dataset.stats)
                }, is_best)
Exemplo n.º 4
0
def main():
    global args, best_loss
    args = parser.parse_args()

    dataset_configs = get_configs(args.dataset)

    num_class = dataset_configs['num_class']
    stpp_configs = tuple(dataset_configs['stpp'])
    sampling_configs = dataset_configs['sampling']

    model = SSN(num_class, args.num_aug_segments, args.num_body_segments, args.num_aug_segments,
                args.modality,
                base_model=args.arch, dropout=args.dropout,
                stpp_cfg=stpp_configs, bn_mode=args.bn_mode)

    if args.init_weights:
        if os.path.isfile(args.init_weights):
            print(("=> loading pretrained weigths '{}'".format(args.init_weights)))
            wd = torch.load(args.init_weights)
            model.base_model.load_state_dict(wd['state_dict'])
            print(("=> loaded init weights from '{}'"
                   .format(args.init_weights)))
        else:
            print(("=> no weights file found at '{}'".format(args.init_weights)))
    elif args.kinetics_pretrain:
        model_url = dataset_configs['kinetics_pretrain'][args.arch][args.modality]
        model.base_model.load_state_dict(model_zoo.load_url(model_url)['state_dict'])
        print(("=> loaded init weights from '{}'"
               .format(model_url)))
    else:
        # standard ImageNet pretraining
        if args.modality == 'Flow':
            model_url = dataset_configs['flow_init'][args.arch]
            model.base_model.load_state_dict(model_zoo.load_url(model_url)['state_dict'])
            print(("=> loaded flow init weights from '{}'"
                   .format(model_url)))

    crop_size = model.crop_size
    scale_size = model.scale_size
    input_mean = model.input_mean
    input_std = model.input_std
    policies = model.get_optim_policies()
    train_augmentation = model.get_augmentation()

    model = torch.nn.DataParallel(model, device_ids=args.gpus).cuda()

    if args.resume:
        if os.path.isfile(args.resume):
            print(("=> loading checkpoint '{}'".format(args.resume)))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint['epoch']
            best_loss = checkpoint['best_loss']
            model.load_state_dict(checkpoint['state_dict'])
            print(("=> loaded checkpoint '{}' (epoch {})"
                  .format(args.evaluate, checkpoint['epoch'])))
        else:
            print(("=> no checkpoint found at '{}'".format(args.resume)))

    cudnn.benchmark = True
    pin_memory = (args.modality == 'RGB')

    # Data loading code
    if args.modality != 'RGBDiff':
        normalize = GroupNormalize(input_mean, input_std)
    else:
        normalize = IdentityTransform()

    if args.modality == 'RGB':
        data_length = 1
    elif args.modality in ['Flow', 'RGBDiff']:
        data_length = 5
    else:
        raise ValueError("unknown modality {}".format(args.modality))

    train_prop_file = 'data/{}_proposal_list.txt'.format(dataset_configs['train_list'])
    val_prop_file = 'data/{}_proposal_list.txt'.format(dataset_configs['test_list'])
    train_loader = torch.utils.data.DataLoader(
        SSNDataSet("", train_prop_file,
                   epoch_multiplier=args.training_epoch_multiplier,
                   new_length=data_length,
                   modality=args.modality, exclude_empty=True, **sampling_configs,
                   aug_seg=args.num_aug_segments, body_seg=args.num_body_segments,
                   image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"] else args.flow_prefix+"{}_{:05d}.jpg",
                   transform=torchvision.transforms.Compose([
                       train_augmentation,
                       Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
                       ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
                       normalize,
                   ])),
        batch_size=args.batch_size, shuffle=True,
        num_workers=args.workers, pin_memory=pin_memory,
        drop_last=True)  # in training we drop the last incomplete minibatch

    val_loader = torch.utils.data.DataLoader(
        SSNDataSet("", val_prop_file,
                   new_length=data_length,
                   modality=args.modality, exclude_empty=True, **sampling_configs,
                   aug_seg=args.num_aug_segments, body_seg=args.num_body_segments,
                   image_tmpl="img_{:05d}.jpg" if args.modality in ["RGB", "RGBDiff"] else args.flow_prefix+"{}_{:05d}.jpg",
                   random_shift=False,
                   transform=torchvision.transforms.Compose([
                       GroupScale(int(scale_size)),
                       GroupCenterCrop(crop_size),
                       Stack(roll=(args.arch in ['BNInception', 'InceptionV3'])),
                       ToTorchFormatTensor(div=(args.arch not in ['BNInception', 'InceptionV3'])),
                       normalize,
                   ]), reg_stats=train_loader.dataset.stats),
        batch_size=args.batch_size, shuffle=False,
        num_workers=args.workers, pin_memory=pin_memory)

    activity_criterion = torch.nn.CrossEntropyLoss().cuda()
    completeness_criterion = CompletenessLoss().cuda()
    regression_criterion = ClassWiseRegressionLoss().cuda()

    for group in policies:
        print(('group: {} has {} params, lr_mult: {}, decay_mult: {}'.format(
            group['name'], len(group['params']), group['lr_mult'], group['decay_mult'])))

    optimizer = torch.optim.SGD(policies,
                                args.lr,
                                momentum=args.momentum,
                                weight_decay=args.weight_decay)

    if args.evaluate:
        validate(val_loader, model, activity_criterion, completeness_criterion, regression_criterion, 0)
        return

    for epoch in range(args.start_epoch, args.epochs):
        adjust_learning_rate(optimizer, epoch, args.lr_steps)

        # train for one epoch
        train(train_loader, model, activity_criterion, completeness_criterion, regression_criterion, optimizer, epoch)

        # evaluate on validation set
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, activity_criterion, completeness_criterion, regression_criterion, (epoch + 1) * len(train_loader))

            # remember best prec@1 and save checkpoint
            is_best = loss < best_loss
            best_loss = min(loss, best_loss)
            save_checkpoint({
                'epoch': epoch + 1,
                'arch': args.arch,
                'state_dict': model.state_dict(),
                'best_loss': best_loss,
                'reg_stats': torch.from_numpy(train_loader.dataset.stats)
            }, is_best)
Exemplo n.º 5
0
def main():
    global args, best_loss
    args = parser.parse_args()
    dataset_configs = get_actionness_configs(args.dataset)
    sampling_configs = dataset_configs['sampling']
    num_class = dataset_configs['num_class']
    torch.manual_seed(args.seed)
    torch.cuda.manual_seed(args.seed)
    db = ANetDB.get_db("1.3")

    # set the directory for the rgb features
    if args.feat_model == 'i3d_rgb' or args.feat_model == 'i3d_rgb_trained':
        args.input_dim = 1024
    elif args.feat_model == 'inception_resnet_v2' or args.feat_model == 'inception_resnet_v2_trained':
        args.input_dim = 1536
    if args.use_flow:
        if not args.only_flow:
            args.input_dim += 1024
        else:
            args.input_dim = 1024
    print(("=> the input features are extracted from '{}' and the dim is '{}'"
           ).format(args.feat_model, args.input_dim))
    # if reduce the dimension of input feature first
    if args.reduce_dim > 0:
        assert args.reduce_dim % args.n_head == 0, "reduce_dim {} % n_head {} != 0".format(
            args.reduce_dim, args.n_head)
        args.d_k = int(args.reduce_dim // args.n_head)
        args.d_v = args.d_k
    else:
        assert args.input_dim % args.n_head == 0, "input_dim {} % n_head {} != 0".format(
            args.input_dim, args.n_head)
        args.d_k = int(args.input_dim // args.n_head)
        args.d_v = args.d_k
    args.d_model = args.n_head * args.d_k

    if not os.path.exists(args.result_path):
        os.makedirs(args.result_path)
    if args.pos_enc:
        save_path = os.path.join(
            args.result_path, '_'.join(
                (args.att_kernel_type, 'N' + str(args.n_layers))))
    else:
        save_path = os.path.join(
            args.result_path, '_'.join(
                (args.att_kernel_type, 'N' + str(args.n_layers)))) + '_nopos'
    if args.num_local > 0:
        save_path = save_path + '_loc' + str(args.num_local) + args.local_type
        if args.dilated_mask:
            save_path += '_dilated'
    if args.groupwise_heads > 0:
        save_path = save_path + '_G' + str(args.groupwise_heads)
    if len(args.roi_poolsize) > 0:
        save_path = save_path + '_roi' + str(args.roi_poolsize)
    model_name = os.path.split(save_path)[1]
    # logger = Logger('./logs/{}'.format(model_name))
    logger = None

    model = BinaryClassifier(num_class,
                             args.num_body_segments,
                             args,
                             dropout=args.dropout)
    model = torch.nn.DataParallel(model, device_ids=None).cuda()

    cudnn.enabled = False
    # cudnn.benchmark = True
    pin_memory = True
    train_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['train_list'])
    val_prop_file = 'data/{}_proposal_list.txt'.format(
        dataset_configs['test_list'])
    train_videos = db.get_subset_videos('training')
    val_videos = db.get_subset_videos('validation')
    train_loader = torch.utils.data.DataLoader(BinaryDataSet(
        args.feat_root,
        args.feat_model,
        train_prop_file,
        train_videos,
        exclude_empty=True,
        body_seg=args.num_body_segments,
        input_dim=args.d_model,
        prop_per_video=args.prop_per_video,
        fg_ratio=6,
        bg_ratio=6,
        num_local=args.num_local,
        use_flow=args.use_flow,
        only_flow=args.only_flow),
                                               batch_size=args.batch_size,
                                               shuffle=True,
                                               num_workers=args.workers,
                                               pin_memory=pin_memory,
                                               drop_last=True)

    # val_loader = torch.utils.data.DataLoader(
    #     BinaryDataSet(args.feat_root, args.feat_model, val_prop_file, val_videos,
    #                   exclude_empty=True, body_seg=args.num_body_segments,
    #                   input_dim=args.d_model, prop_per_video=args.prop_per_video,
    #                   fg_ratio=6, bg_ratio=6, num_local=args.num_local,
    #                   use_flow=args.use_flow, only_flow=args.only_flow),
    #     batch_size=args.batch_size//2, shuffle=False,
    #     num_workers=args.workers*2, pin_memory=pin_memory)
    val_loader = torch.utils.data.DataLoader(BinaryDataSet(
        args.feat_root,
        args.feat_model,
        val_prop_file,
        subset_videos=val_videos,
        exclude_empty=True,
        body_seg=args.num_body_segments,
        input_dim=args.d_model,
        test_mode=True,
        use_flow=args.use_flow,
        verbose=False,
        num_local=args.num_local,
        only_flow=args.only_flow),
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=10,
                                             pin_memory=True)

    ground_truth, cls_to_idx = grd_activity(
        'data/activity_net.v1-3.min_save.json', subset='validation')
    del cls_to_idx['background']

    # optimizer = torch.optim.Adam(
    #         model.parameters(),
    #         args.lr, weight_decay=args.weight_decay)

    optimizer = AdamW(model.parameters(),
                      args.lr,
                      weight_decay=args.weight_decay)

    # optimizer = torch.optim.SGD(model.parameters(),
    #                             args.lr,
    #                             momentum=args.momentum,
    #                             weight_decay=args.weight_decay, nesterov=False)

    if args.resume is not None and len(args.resume) > 0:
        model.load_state_dict(torch.load(args.resume)['state_dict'],
                              strict=False)
    criterion_stage1 = CE_Criterion_multi(use_weight=True)
    criterion_stage2 = Rank_Criterion(epsilon=0.02)

    patience = 0
    for epoch in range(args.start_epoch, args.epochs):
        # adjust_learning_rate(optimizer, epoch, args.lr_steps)
        # train for one epoch
        if patience > 5:
            break
        train(train_loader, model, optimizer, criterion_stage1,
              criterion_stage2, epoch, logger)

        # evaluate on validation list
        if (epoch + 1) % args.eval_freq == 0 or epoch == args.epochs - 1:
            loss = validate(val_loader, model, ground_truth,
                            (epoch + 1) * len(train_loader), epoch)

            # remember best prec@1 and save checkpoint
            is_best = 1.0001 * loss < best_loss
            if is_best:
                patience = 0
            else:
                patience += 1
            best_loss = min(loss, best_loss)
            save_checkpoint(
                {
                    'epoch': epoch + 1,
                    'arch': args.model,
                    'state_dict': model.state_dict(),
                    'best_loss': best_loss,
                }, is_best, save_path)