Exemplo n.º 1
0
def sample_filter(category1, category2, averaging, nrefits):
    if category2 > category1:
        return False
    return True


def func(category1, category2, averaging, nrefits):
    start_time = time.time()
    np.random.seed(10 * category1 + category2)
    y_train1, y_train2 = get_categories(category1, category2)
    np.random.seed()
    htest = HTest(dataloader_workers=0,
                  verbose=1,
                  distribution="bernoulli",
                  averaging=averaging)
    htest.fit(y_train1, y_train2, nrefits=nrefits)
    elapsed_time = time.time() - start_time

    return dict(
        pvalue=htest.pvalue,
        elapsed_time=elapsed_time,
    )


do_simulation_study(to_sample,
                    func,
                    db,
                    ResultVAECIFARHTest,
                    sample_filter=sample_filter)
Exemplo n.º 2
0
    if ncomparisons == 1 and averaging == "median":
        return False
    return True

def func(distribution,
    no_instances,
    dissimilarity,
    ncomparisons,
    averaging):
    def data_gen(size, dim, mu):
        res = np.linspace(0.2, 0.9, dim)
        res = stats.lognorm.rvs(res, scale=2, size=(size, dim))
        res -= stats.lognorm.rvs(0.5, scale=2, size=(size, 1))
        res += stats.norm.rvs(loc=mu, scale=2, size=(size, 1))
        return res

    start_time = time.time()
    y_train0 = data_gen(no_instances, 10, 0)
    y_train1 = data_gen(no_instances, 10, dissimilarity)
    htest = HTest(dataloader_workers=0, verbose=1, averaging=averaging)
    htest.fit(y_train0, y_train1, 10000, ncomparisons=ncomparisons)
    elapsed_time = time.time() - start_time

    return dict(
        pvalue=htest.pvalue,
        elapsed_time=elapsed_time,
        )

do_simulation_study(to_sample, func, db, ResultVAEHTest,
    max_count=200, sample_filter=sample_filter)
Exemplo n.º 3
0
        retrain_permutations = retrain_permutations,
        estimator = estimator,
        method = method,
        )
    elif estimator == "rf":
        nn_obj = NNPTest(
        y_train = y_train,
        x_train = np.delete(x_train_n, feature_testedd, 1),
        x_to_permutate = x_train_n[:, feature_testedd],
        retrain_permutations = retrain_permutations,
        estimator = "rf",
        method = method,
        n_estimators = 300,
        )
    elif estimator == "linear":
        nn_obj = NNPTest(
        y_train = y_train,
        x_train = np.delete(x_train_n, feature_testedd, 1),
        x_to_permutate = x_train_n[:, feature_testedd],
        retrain_permutations = retrain_permutations,
        estimator = "linear",
        method = method,
        )

    return dict(
        pvalue=nn_obj.pvalue, elapsed_time=nn_obj.elapsed_time,
    )

do_simulation_study(to_sample, func, db, ResultRealData, max_count=1,
    sample_filter=sample_filter)
from cifar_compare_db_structure import ResultVAECIFARCompare, db
from vaecompare import Compare
from sstudy import do_simulation_study
from utils import get_categories

to_sample = dict(
    category1 = range(10),
    category2 = range(10),
)

def sample_filter(category1, category2):
    if category2 > category1:
        return False
    return True

def func(category1, category2):
    start_time = time.time()
    y_train1, y_train2 = get_categories(category1, category2)
    compare = Compare(dataloader_workers=0, verbose=2,
        distribution="bernoulli")
    compare.fit(y_train1, y_train2, 10000)
    elapsed_time = time.time() - start_time

    return dict(
        samples=pickle.dumps(compare.samples),
        elapsed_time=elapsed_time,
        )

do_simulation_study(to_sample, func, db, ResultVAECIFARCompare,
    sample_filter=sample_filter, max_count=90)