Exemplo n.º 1
0
def check_parens(text):
    parens = "()[]{}"  # 括号字符
    open_parens = "([{"  # 开括号字符
    opposite = {')' : '(', ']' : '[', '}' : '{'}  # 表示匹配关系的字典

    def parantheses(text):
        # 括号生成器,每次调用返回text里的下一括号及其位置
        i, text_len = 0, len(text)
        while True:
            # 从位置0开始扫描字符串,如果不是括号的符号就继续向后扫描
            while i < text_len and text[i] not in parens:
                i += 1
            # 扫描完整个字符串,则结束
            if i >= text_len:
                return
            # 以上都不符合,那么就是扫描到了括号,返回一个括号符号
            yield text[i], i
            i += 1  # 继续扫描下一个

    st = SStack()  # 保存括号的栈

    for pr, i in parantheses(text):  # 对text里的各括号和位置迭代
        if pr in open_parens:  # 从括号生成器中拿出来的括号符号是开括号,压进栈并继续
            st.push(pr)
        # 不是开括号就是闭括号,这时弹出栈里面的括号,看是否和当前括号匹配
        elif st.pop() != opposite[pr]:
            print('Unmatching is found at', i, 'for', pr)
            return False
        # else:  # 成功的匹配,啥也不做,继续
    print('All parentheses are correctly matched.')
    return True
def pre_order_nr(tree, func):
    s = SStack()
    while tree or not s.is_empty():
        while tree:
            func(tree.root)
            s.push(tree.right)
            tree = tree.left
        tree = s.pop()
Exemplo n.º 3
0
def postorder_nonrec(t, proc):
    s = SStack()
    while t is not None or not s.is_empty():
        while t is not None:  #下行循环,直到栈顶的两子树空
            s.push(t)
            t = t.left if t.left is not None else t.right  #能左就左否则向右
        t = s.pop()  #栈顶是应访问节点
        proc(t.data)
        if not s.is_empty() and s.top().left == t:
            t = s.top().right  #栈不空且当前节点是栈定左子节点
        else:  #没有右子树或右子树遍历完毕,强迫退栈
            t = None
Exemplo n.º 4
0
def postorder_nonrec(t_, proc):
    s = SStack()
    while t_ is not None or not s.is_empty():
        while t_ is not None:  # 下行循环,直到栈顶的两个树空
            s.push(t_)
            t_ = t_.left if t_.left is not None else t_.right  # 注意这个条件表达式的意义:能左就左,否则向右一步
        t_ = s.pop()  # 栈顶是访问结点
        proc(t_.dat)
        if not s.is_empty() and s.top().left == t_:
            t_ = s.top().right  # 栈不空且当前结点是栈顶的左子结点
        else:
            t_ = None  # 没有右子树或右子树遍历完毕,强迫退栈
Exemplo n.º 5
0
def trans_infix_suffix(line):
    st = SStack()
    exp = []  # 记录转换得到的后缀表达式,采用项表的形式

    for x in token(line):
        if x not in infix_operatios:
            pass
Exemplo n.º 6
0
 def preorder_elements(self):
     t, s = self._root, SStack()
     while t is not None or not s.is_empty():
         while t is not None:
             s.push(t.right)
             yield t.dat
             t = t.left
         t = s.pop()
def DFS_graph(graph, v0):
    vnum = graph.vertex_num()
    visited = [0] * vnum
    visited[v0] = 1
    DFS_seq = [v0]
    st = SStack()
    st.push((0, graph.out_edges(v0)))
    while not st.is_empty():
        i, edges = st.pop()
        if i < len(edges):
            v, e = edges[i]
            st.push((i+1, edges))
            if not visited[v]:
                DFS_seq.append(v)
                visited[v] = 1
                st.push((0, graph.out_edges(v)))
    return DFS_seq
Exemplo n.º 8
0
def DFS_graph_non_recursive(graph, v0):  # 借用辅助栈 非递归实现
    ver_num = graph.get_ver_num()
    visited = [0] * ver_num
    visited[v0] = 1
    dfs_seq = [v0]  #dfs序列
    st = SStack()
    st.push((0, graph.get_outedges(v0)))
    while not st.is_empty():
        i, edges = st.pop()
        if i < len(edges):
            v, w = edges[i]
            st.push((i + 1, edges))  #回溯时访问i+1
            if not visited[v]:  #v未被访问,记录并继续dfs
                dfs_seq.append(v)
                visited[v] = 1
                st.push((0, graph.get_outedges(v)))
    return dfs_seq
 def values(self):
     t, s = self._root, SStack()
     while t or not s.is_empty():
         while t:
             s.push(t)
             t = t.left
         t = s.pop()
         yield t.data.key, t.data.value
         t = t.right
 def entries(self):
     t, s = self._root, SStack()
     while t is not None or not s.is_empty():
         while t is not None:
             s.push(t)
             t = t.left
         t = s.pop()
         yield t.dat.key, t.dat.value
         t = t.right
Exemplo n.º 11
0
def dfs_non_recursive_traverse_postorder(t, proc):  #dfs非递归 后根序
    s = SStack()

    while t is not None or not s.is_empty():
        while t is not None:
            s.push(t)
            if t.left is not None:
                t = t.left
            else:
                t = t.right

        t = s.pop()
        proc(t.data)
        if not s.is_empty() and s.top().left == t:
            t = s.top().right  #这一步很关键
        else:
            t = None
Exemplo n.º 12
0
def DFS_SpanTree(graph, v0):
    vertex_num = graph.get_ver_num()
    dfs_spantree = []
    visited = [0] * vertex_num
    visited[v0] = 1

    st = SStack()
    st.push((0, v0, graph.get_outedges(v0)))

    while not st.is_empty():
        i, prev_v, edges = st.pop()

        if i < len(edges):
            v, w = edges[i]
            st.push((i + 1, prev_v, edges))
            if not visited[v]:
                visited[v] = 1
                st.push((0, v, graph.get_outedges(v)))
                dfs_spantree.append((prev_v, w, v))

    return dfs_spantree
Exemplo n.º 13
0
def preorder_elements(t_):
    s = SStack()
    while t_ is not None or not s.is_empty():
        while t_ is not None:
            s.push(t_.right)
            yield t_.dat
            t_ = t_.left
        t_ = s.pop()
Exemplo n.º 14
0
def preorder_nonrec(t, proc):
    s = SStack()
    while t is not None or not s.is_empty():
        while t is not None:
            proc(t.data)
            s.push(t.right)
            t = t.left
        t = s.pop()
Exemplo n.º 15
0
def preorder_elements(t):
    s = SStack()
    while t is not None or not s.is_empty():
        while t is not None:
            s.push(t.right)
            yield t.data
            t = t.left
        t = s.pop()
Exemplo n.º 16
0
def dfs(graph, s):
    stack = SStack()
    stack.push(s)
    seen = set()
    seen.add(s)
    parent = {s: None}
    while not stack.is_empty():
        vertex = stack.pop()
        nodes = graph[vertex]
        for i in nodes:
            if i not in seen:
                stack.push(i)
                seen.add(i)
                parent[i] = vertex
        print vertex
    return parent
Exemplo n.º 17
0
def norec_fact(n):  # 自己管理栈,模拟函数调用过程
    res = 1
    st = SStack()
    while n > 0:
        st.push(n)
        n -= 1
    while not st.is_empty():
        res *= st.pop()
    return res
Exemplo n.º 18
0
def dfs_non_recursive_traverse(t, proc):  #dfs非递归 先根序
    s = SStack()

    while t is not None or not s.is_empty():
        while t is not None:
            proc(t.data)
            s.push(t.right)
            t = t.left

        t = s.pop()
Exemplo n.º 19
0
def preorder_nonrec(t_, proc):
    """
    时间复杂性: O(n)
    空间复杂性: O(log(n))
    """
    s = SStack()
    while t_ is not None or not s.is_empty():
        while t_ is not None:
            proc(t_.dat)
            s.push(t_.right)
            t_ = t_.left
        t_ = s.pop()
def maze_solver(maze, start, end):
    if start == end:
        print(start)
        return
    st == SStack()
    mark(maze, start)
    st.push((start, 0))
    while not st.is_empty():
        pos, nxt = st.pop()
        for i in range(nxt, 4):
            nextp = pos[0] + dirs[i][0], pos[1] + dirs[i][1]
            if nextp == end:
                print_path(end, pos, st)
                return
            if passable(maze, nextp):
                st.push((pos, i + 1))
                mark(maze, nextp)
                st.push((nextp, 0))
                break
    print("No path found.")
Exemplo n.º 21
0
    def delete(self, key):
        p, q = self._root, None
        parent_nodes = SStack()  #记录所有父结点
        #检索 并记录路径
        while p is not None and key != p.data.key:
            q = p
            if key < p.data.key:
                p = p.left
                parent_nodes.push(q)
            else:
                p = p.right
                parent_nodes.push(q)
        #没有找到删除结点
        if key != p.data.key:
            return

        assoc = p
        #删除叶结点
        if p.right == None and p.left == None:
            DictAVL.del_adjustment_leaf(self._root, p, q, parent_nodes)
            return assoc

        # 只有左子树
        if p.left is not None and p.right is None:
            DictAVL.del_adjustment_ol(p, q, parent_nodes)
            return assoc

        # 只有右子树
        if p.left is None and p.right is not None:
            DictAVL.del_adjustment_or(p, q, parent_nodes)
            return assoc
        #左右子树都有
        if p.left is not None and p.right is not None:
            p_traverse, q_traverse = p, None
            if p.bf == -1:  #若右子树高
                #找到右子树的最左结点 一定是一个叶结点
                while p_traverse is not None:
                    q_traverse = p_traverse  #q_traverse是p_traverse的父结点
                    p_traverse = p_traverse.right
                    parent_nodes.push(p_traverse)

                p.data.key, p.data.value = p_traverse.data.key, p_traverse.data.value  #进行交换

                DictAVL.del_adjustment_leaf(self._root, p_traverse, q_traverse,
                                            parent_nodes)  #进行调整
                return assoc

            elif p.bf == 0:  #两棵子树一样高 左子树最右 右子树最左都可以
                #找到右子树的最左结点 一定是一个叶结点
                while p_traverse is not None:
                    q_traverse = p_traverse  #q_traverse是p_traverse的父结点
                    p_traverse = p_traverse.right
                    parent_nodes.push(p_traverse)

                p.data.key, p.data.value = p_traverse.data.key, p_traverse.data.value  #进行交换
                DictAVL.del_adjustment_leaf(self._root, p, q, parent_nodes)
                return assoc
            else:  #p.bf == 1
                while p_traverse is not None:
                    q_traverse = p_traverse  #q_traverse是p_traverse的父结点
                    p_traverse = p_traverse.left
                    parent_nodes.push(p_traverse)

                p.data.key, p.data.value = p_traverse.data.key, p_traverse.data.value  #进行交换
                DictAVL.del_adjustment_leaf(self._root, p, q, parent_nodes)
                return assoc
def trans_infix_suffix(line):
    st = SStack()
    exp = []

    for x in tokens(line):  # tokens是一个待定义的生成器
        if x not in infix_operators:  # 运算对象直接送出
            exp.append(x)
        elif st.is_empty() or x == '(':  # 左括号进栈
            st.push(x)
        elif x == ')':  # 处理右括号的分支
            while not st.is_empty() and st.top() != '(':
                exp.append(st.pop())
                if st.is_empty():  # 没有找到左括号,就是不配对
                    raise SyntaxError('Missing "(".')
                st.pop()  # 弹出左括号,右括号也不进栈
        else:  # 处理运算符,运算符都看作左结合
            while (not st.is_empty()) and priority[st.top()] >= priority[x]:
                exp.append(st.pop())
            st.push(x)  # 算数运算符进栈

    while not st.is_empty():  # 送出栈里剩下的运算符
        if st.pop() == '(':  # 如果还有左括号,就是不配对
            raise SyntaxError('Extra "(".')
        exp.append(st.pop())

    return exp
Exemplo n.º 23
0
def check_parens(text):
    """ 括号匹配检查函数,text是被检查的正文串 """
    parens = '()[]{}'
    open_parens = '([{'
    opposite = {')': '(', ']': '[', '}': '{'}  # 表示配对关系的字典

    st = SStack()  # 保存括号的栈
    st_i = SStack()
    for pr, i in parentheses(text, parens):  # 对text里各括号和位置迭代
        if pr in open_parens:  # 开括号,压进栈并继续
            st.push(pr)
            st_i.push(i)
        elif st.is_empty() or st.pop() != opposite[pr]:  # 不匹配就是失败,退出
            if not st.is_empty():
                st_i.pop()
            print('Unmatching is found at', i, 'for', pr)
            return False
        else:  # 这是一次括号配对成功,什么也不做,继续
            st_i.pop()
    if not st.is_empty():
        '''
        st_i_ = ''
        st_ = ''
        while not st.is_empty():
            st_i_ = str(st_i.pop()) + st_i_
            st_ = st.pop() + st_

        print('Unmatching is found at', st_i_, 'for', st_)
        '''
        print('Unmatching is found at', st_i.pop(), 'for', st.pop())
        return False
    print('All parentheses are correctly matched.')
    return True
Exemplo n.º 24
0
def maze_solver(maze, start, end):
    if start == end:
        print(start)
        return
    st = SStack()
    mark(maze, start)
    st.push((start, 0))  # 入口和方向0的序对入栈
    while not st.is_empty():  # 走不通时回退
        pos, nxt = st.pop()  # 取栈顶及其探查方向
        for i in range(nxt, 4):  # 依次检查未探查方向
            nextp = (pos[0] + dirs[i][0], pos[1] + dirs[i][1])  # 算出下一位置
            if nextp == end:  # 到达出口打印路径
                print(end, end=' ')
                print(pos, end=' ')
                while not st.is_empty():
                    print(st.pop()[0], end=' ')
                return
            if passable(maze, nextp):  # 遇到未探查的新位置
                st.push((pos, i + 1))  # 原位置和下一方向入栈
                mark(maze, nextp)
                st.push((nextp, 0))  # 新位置入栈
                break  # 退出内层循环,下次迭代将以新栈顶为当前位置继续
    print('No path found.')  # 找不到路径