Exemplo n.º 1
0
 def __init__(self,
              args=None,
              vocab=None,
              pretrain=None,
              model_file=None,
              use_cuda=False):
     self.use_cuda = use_cuda
     if model_file is not None:
         # load everything from file
         self.load(model_file, pretrain)
     else:
         # build model from scratch
         self.args = args
         self.vocab = vocab
         self.model = Tagger(
             args,
             vocab,
             emb_matrix=pretrain.emb if pretrain is not None else None,
             share_hid=args['share_hid'])
     self.parameters = [
         p for p in self.model.parameters() if p.requires_grad
     ]
     if self.use_cuda:
         self.model.cuda()
     else:
         self.model.cpu()
     self.optimizer = utils.get_optimizer(self.args['optim'],
                                          self.parameters,
                                          self.args['lr'],
                                          betas=(0.9, self.args['beta2']),
                                          eps=1e-6)
Exemplo n.º 2
0
 def load(self, filename, pretrain):
     """
     Load a model from file, with preloaded pretrain embeddings. Here we allow the pretrain to be None or a dummy input,
     and the actual use of pretrain embeddings will depend on the boolean config "pretrain" in the loaded args.
     """
     try:
         checkpoint = torch.load(filename, lambda storage, loc: storage)
     except BaseException:
         logger.error("Cannot load model from {}".format(filename))
         raise
     self.args = checkpoint['config']
     self.vocab = MultiVocab.load_state_dict(checkpoint['vocab'])
     # load model
     emb_matrix = None
     if self.args['pretrain'] and pretrain is not None: # we use pretrain only if args['pretrain'] == True and pretrain is not None
         emb_matrix = pretrain.emb
     self.model = Tagger(self.args, self.vocab, emb_matrix=emb_matrix, share_hid=self.args['share_hid'])
     self.model.load_state_dict(checkpoint['model'], strict=False)
Exemplo n.º 3
0
class Trainer(BaseTrainer):
    """ A trainer for training models. """
    def __init__(self,
                 args=None,
                 vocab=None,
                 pretrain=None,
                 model_file=None,
                 use_cuda=False):
        self.use_cuda = use_cuda
        if model_file is not None:
            # load everything from file
            self.load(model_file, pretrain)
        else:
            # build model from scratch
            self.args = args
            self.vocab = vocab
            self.model = Tagger(
                args,
                vocab,
                emb_matrix=pretrain.emb if pretrain is not None else None,
                share_hid=args['share_hid'])
        self.parameters = [
            p for p in self.model.parameters() if p.requires_grad
        ]
        if self.use_cuda:
            self.model.cuda()
        else:
            self.model.cpu()
        self.optimizer = utils.get_optimizer(self.args['optim'],
                                             self.parameters,
                                             self.args['lr'],
                                             betas=(0.9, self.args['beta2']),
                                             eps=1e-6)

    def update(self, batch, eval=False):
        inputs, orig_idx, word_orig_idx, sentlens, wordlens = unpack_batch(
            batch, self.use_cuda)
        word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained = inputs

        if eval:
            self.model.eval()
        else:
            self.model.train()
            self.optimizer.zero_grad()
        loss, _ = self.model(word, word_mask, wordchars, wordchars_mask, upos,
                             xpos, ufeats, pretrained, word_orig_idx, sentlens,
                             wordlens)
        loss_val = loss.data.item()
        if eval:
            return loss_val

        loss.backward()
        torch.nn.utils.clip_grad_norm_(self.model.parameters(),
                                       self.args['max_grad_norm'])
        self.optimizer.step()
        return loss_val

    def predict(self, batch, unsort=True):
        inputs, orig_idx, word_orig_idx, sentlens, wordlens = unpack_batch(
            batch, self.use_cuda)
        word, word_mask, wordchars, wordchars_mask, upos, xpos, ufeats, pretrained = inputs

        self.model.eval()
        batch_size = word.size(0)
        _, preds = self.model(word, word_mask, wordchars, wordchars_mask, upos,
                              xpos, ufeats, pretrained, word_orig_idx,
                              sentlens, wordlens)
        upos_seqs = [
            self.vocab['upos'].unmap(sent) for sent in preds[0].tolist()
        ]
        xpos_seqs = [
            self.vocab['xpos'].unmap(sent) for sent in preds[1].tolist()
        ]
        feats_seqs = [
            self.vocab['feats'].unmap(sent) for sent in preds[2].tolist()
        ]

        pred_tokens = [[[upos_seqs[i][j], xpos_seqs[i][j], feats_seqs[i][j]]
                        for j in range(sentlens[i])]
                       for i in range(batch_size)]
        if unsort:
            pred_tokens = utils.unsort(pred_tokens, orig_idx)
        return pred_tokens

    def save(self, filename, skip_modules=True):
        model_state = self.model.state_dict()
        # skip saving modules like pretrained embeddings, because they are large and will be saved in a separate file
        if skip_modules:
            skipped = [
                k for k in model_state.keys()
                if k.split('.')[0] in self.model.unsaved_modules
            ]
            for k in skipped:
                del model_state[k]
        params = {
            'model': model_state,
            'vocab': self.vocab.state_dict(),
            'config': self.args
        }
        try:
            torch.save(params, filename, _use_new_zipfile_serialization=False)
            logger.info("Model saved to {}".format(filename))
        except (KeyboardInterrupt, SystemExit):
            raise
        except Exception as e:
            logger.warning(f"Saving failed... {e} continuing anyway.")

    def load(self, filename, pretrain):
        """
        Load a model from file, with preloaded pretrain embeddings. Here we allow the pretrain to be None or a dummy input,
        and the actual use of pretrain embeddings will depend on the boolean config "pretrain" in the loaded args.
        """
        try:
            checkpoint = torch.load(filename, lambda storage, loc: storage)
        except BaseException:
            logger.error("Cannot load model from {}".format(filename))
            raise
        self.args = checkpoint['config']
        self.vocab = MultiVocab.load_state_dict(checkpoint['vocab'])
        # load model
        emb_matrix = None
        if self.args[
                'pretrain'] and pretrain is not None:  # we use pretrain only if args['pretrain'] == True and pretrain is not None
            emb_matrix = pretrain.emb
        self.model = Tagger(self.args,
                            self.vocab,
                            emb_matrix=emb_matrix,
                            share_hid=self.args['share_hid'])
        self.model.load_state_dict(checkpoint['model'], strict=False)