Exemplo n.º 1
0
def test_proof_serialize_deserialize():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    keys = {
        k.encode(): [
            rlp_encode([v]),
        ]
        for k, v in [('k1', 'v1'), ('k2', 'v2'), ('k35', 'v55'), ('k70',
                                                                  'v99')]
    }

    for k, v in keys.items():
        node_trie.update(k, v[0])

    for k in keys:
        keys[k].append(node_trie.generate_state_proof(k, serialize=True))

    for k in keys:
        prf = keys[k][1]
        assert isinstance(prf, bytes)
        assert client_trie.verify_spv_proof(node_trie.root_hash,
                                            k,
                                            keys[k][0],
                                            prf,
                                            serialized=True)
Exemplo n.º 2
0
def test_proof_prefix_only_prefix_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcdefgh'
    keys_suffices = set()
    while len(keys_suffices) != 20:
        keys_suffices.add(randint(25, 25000))

    key_vals = {'{}{}'.format(prefix, k): str(randint(3000, 5000))
                for k in keys_suffices}
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=True)
    encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items()}
    # Check returned values match the actual values
    assert encoded == val
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                              encoded, proof_nodes)
    # Check without value
    proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=False)
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                              encoded, proof_nodes)
Exemplo n.º 3
0
def test_proof_prefix_only_prefix_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcdefgh'
    keys_suffices = set()
    while len(keys_suffices) != 20:
        keys_suffices.add(randint(25, 25000))

    key_vals = {
        '{}{}'.format(prefix, k): str(randint(3000, 5000))
        for k in keys_suffices
    }
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=True)
    encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items()}
    # Check returned values match the actual values
    assert encoded == val
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                              proof_nodes)
    # Check without value
    proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=False)
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                              proof_nodes)
Exemplo n.º 4
0
def test_proof_specific_root():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    kvs = OrderedDict({'k1': 'v1', 'k2': 'v2', 'x3': 'v3', 'x4': 'v5',
                       'x5': 'v7', 'y99': 'v6'})
    size = len(kvs)

    # Only add some keys
    old_keys = set()
    i = 0
    for k, v in kvs.items():
        node_trie.update(k.encode(), rlp_encode([v]))
        old_keys.add(k)
        i += 1
        if i >= size // 2:
            break

    # Record the root
    root_hash_0 = node_trie.root_hash
    root_node_0 = deepcopy(node_trie.root_node)

    # Add remaining keys
    new_keys = set()
    i = 0
    for k, v in reversed(kvs.items()):
        node_trie.update(k.encode(), rlp_encode([v]))
        new_keys.add(k)
        i += 1
        if i >= size // 2:
            break

    # Record new roots
    root_hash_1 = node_trie.root_hash
    root_node_1 = deepcopy(node_trie.root_node)

    # Check each root present
    for k, v in kvs.items():
        assert node_trie.get(k.encode()) == rlp_encode([v])

    # Old and new roots should be different
    assert root_hash_0 != root_hash_1
    assert root_node_0 != root_node_1

    # Generate and verify proof for both old (if key was present) and new roots
    for k, v in kvs.items():
        k, v = k.encode(), rlp_encode([v])

        if k in old_keys:
            old_root_proof = node_trie.generate_state_proof(k, root=root_node_0)
            assert client_trie.verify_spv_proof(root_hash_0, k, v, old_root_proof)

        new_root_proof = node_trie.generate_state_proof(k, root=root_node_1)
        assert client_trie.verify_spv_proof(root_hash_1, k, v, new_root_proof)
Exemplo n.º 5
0
def test_proof_specific_root():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    kvs = OrderedDict({'k1': 'v1', 'k2': 'v2', 'x3': 'v3', 'x4': 'v5',
                       'x5': 'v7', 'y99': 'v6'})
    size = len(kvs)

    # Only add some keys
    old_keys = set()
    i = 0
    for k, v in kvs.items():
        node_trie.update(k.encode(), rlp_encode([v]))
        old_keys.add(k)
        i += 1
        if i >= size // 2:
            break

    # Record the root
    root_hash_0 = node_trie.root_hash
    root_node_0 = deepcopy(node_trie.root_node)

    # Add remaining keys
    new_keys = set()
    i = 0
    for k, v in reversed(kvs.items()):
        node_trie.update(k.encode(), rlp_encode([v]))
        new_keys.add(k)
        i += 1
        if i >= size // 2:
            break

    # Record new roots
    root_hash_1 = node_trie.root_hash
    root_node_1 = deepcopy(node_trie.root_node)

    # Check each root present
    for k, v in kvs.items():
        assert node_trie.get(k.encode()) == rlp_encode([v])

    # Old and new roots should be different
    assert root_hash_0 != root_hash_1
    assert root_node_0 != root_node_1

    # Generate and verify proof for both old (if key was present) and new roots
    for k, v in kvs.items():
        k, v = k.encode(), rlp_encode([v])

        if k in old_keys:
            old_root_proof = node_trie.generate_state_proof(k, root=root_node_0)
            assert client_trie.verify_spv_proof(root_hash_0, k, v, old_root_proof)

        new_root_proof = node_trie.generate_state_proof(k, root=root_node_1)
        assert client_trie.verify_spv_proof(root_hash_1, k, v, new_root_proof)
Exemplo n.º 6
0
def test_get_proof_and_value():
    # Non prefix nodes
    num_keys = 100
    test_data = gen_test_data(num_keys)

    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    for k, v in test_data.items():
        node_trie.update(k, v)

    for k in test_data:
        proof, v = node_trie.produce_spv_proof(k, get_value=True)
        proof.append(deepcopy(node_trie.root_node))
        assert v == test_data[k]
        assert client_trie.verify_spv_proof(node_trie.root_hash, k, v, proof)
Exemplo n.º 7
0
def test_get_proof_and_value():
    # Non prefix nodes
    num_keys = 100
    test_data = gen_test_data(num_keys)

    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    for k, v in test_data.items():
        node_trie.update(k, v)

    for k in test_data:
        proof, v = node_trie.produce_spv_proof(k, get_value=True)
        proof.append(deepcopy(node_trie.root_node))
        assert v == test_data[k]
        assert client_trie.verify_spv_proof(node_trie.root_hash, k, v, proof)
Exemplo n.º 8
0
def test_proof_serialize_deserialize():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    keys = {k.encode(): [rlp_encode([v]), ] for k, v in
            [('k1', 'v1'), ('k2', 'v2'), ('k35', 'v55'), ('k70', 'v99')]}

    for k, v in keys.items():
        node_trie.update(k, v[0])

    for k in keys:
        keys[k].append(node_trie.generate_state_proof(k, serialize=True))

    for k in keys:
        prf = keys[k][1]
        assert isinstance(prf, bytes)
        assert client_trie.verify_spv_proof(node_trie.root_hash, k, keys[k][0],
                                            prf, serialized=True)
Exemplo n.º 9
0
def test_verify_proof_random_data():
    """
    Add some key value pairs in trie. Generate and verify proof for them.
    :return:
    """
    num_keys = 100
    test_data = gen_test_data(num_keys)
    partitions = 4
    partition_size = num_keys // partitions
    keys = [
        list(list(test_data.keys())[i:i + partition_size])
        for i in range(0, len(test_data), partition_size)
    ]

    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    root_hashes = []
    proofs = []
    for i in range(0, partitions):
        for k in keys[i]:
            node_trie.update(k, test_data[k])

        root_hashes.append(node_trie.root_hash)
        proofs.append({k: node_trie.generate_state_proof(k) for k in keys[i]})
        assert all([
            client_trie.verify_spv_proof(root_hashes[i], k, test_data[k],
                                         proofs[i][k]) for k in keys[i]
        ])

    # Pick any keys from any partition and verify the already generated proof
    for _ in range(400):
        p = randint(0, partitions - 1)
        key = choice(keys[p])
        assert client_trie.verify_spv_proof(root_hashes[p], key,
                                            test_data[key], proofs[p][key])

    # Pick any key randomly, generate new proof corresponding to current root
    # and verify proof
    all_keys = [k for i in keys for k in i]
    root_hash = node_trie.root_hash
    for _ in range(400):
        key = choice(all_keys)
        proof = node_trie.generate_state_proof(key)
        assert client_trie.verify_spv_proof(root_hash, key, test_data[key],
                                            proof)
Exemplo n.º 10
0
def test_proof_prefix_only_prefix_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcdefgh'
    keys_suffices = set()
    while len(keys_suffices) != 20:
        keys_suffices.add(randint(25, 25000))

    key_vals = {'{}{}'.format(prefix, k): str(randint(3000, 5000))
                for k in keys_suffices}
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    proof_nodes = node_trie.generate_state_proof_for_key_prfx(prefix.encode())
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                              {k.encode(): rlp_encode([v]) for
                                               k, v in key_vals.items()},
                                              proof_nodes)
Exemplo n.º 11
0
def test_verify_proof_random_data():
    """
    Add some key value pairs in trie. Generate and verify proof for them.
    :return:
    """
    num_keys = 100
    test_data = gen_test_data(num_keys)
    partitions = 4
    partition_size = num_keys // partitions
    keys = [list(list(test_data.keys())[i:i + partition_size])
            for i in range(0, len(test_data), partition_size)]

    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    root_hashes = []
    proofs = []
    for i in range(0, partitions):
        for k in keys[i]:
            node_trie.update(k, test_data[k])

        root_hashes.append(node_trie.root_hash)
        proofs.append({k: node_trie.generate_state_proof(k) for k in keys[i]})
        assert all([client_trie.verify_spv_proof(root_hashes[i],
                                                 k, test_data[k],
                                                 proofs[i][k]) for k in keys[i]])

    # Pick any keys from any partition and verify the already generated proof
    for _ in range(400):
        p = randint(0, partitions - 1)
        key = choice(keys[p])
        assert client_trie.verify_spv_proof(root_hashes[p], key,
                                            test_data[key], proofs[p][key])

    # Pick any key randomly, generate new proof corresponding to current root
    # and verify proof
    all_keys = [k for i in keys for k in i]
    root_hash = node_trie.root_hash
    for _ in range(400):
        key = choice(all_keys)
        proof = node_trie.generate_state_proof(key)
        assert client_trie.verify_spv_proof(root_hash, key,
                                            test_data[key], proof)
Exemplo n.º 12
0
def test_proof_specific_root():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    node_trie.update('k1'.encode(), rlp_encode(['v1']))
    node_trie.update('k2'.encode(), rlp_encode(['v2']))
    node_trie.update('x3'.encode(), rlp_encode(['v3']))

    root_hash_0 = node_trie.root_hash
    root_node_0 = node_trie.root_node

    node_trie.update('x4'.encode(), rlp_encode(['v5']))
    node_trie.update('y99'.encode(), rlp_encode(['v6']))
    node_trie.update('x5'.encode(), rlp_encode(['v7']))

    # root_hash_1 = node_trie.root_hash
    # root_node_1 = node_trie.root_node

    k, v = 'k1'.encode(), rlp_encode(['v1'])
    old_root_proof = node_trie.generate_state_proof(k, root=root_node_0)
    assert client_trie.verify_spv_proof(root_hash_0, k, v, old_root_proof)
Exemplo n.º 13
0
def test_proof_multiple_prefix_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix_1 = 'abcdefgh'
    prefix_2 = 'abcdefxy'  # Prefix overlaps with previous
    prefix_3 = 'pqrstuvw'
    prefix_4 = 'mnoptuvw'  # Suffix overlaps

    all_prefixes = (prefix_1, prefix_2, prefix_3, prefix_4)

    other_nodes_count = 1000
    prefix_nodes_count = 100

    # Some nodes before prefix nodes
    for _ in range(other_nodes_count):
        k, v = randomString(randint(8, 19)).encode(), rlp_encode(
            [randomString(15)])
        node_trie.update(k, v)

    keys_suffices = set()
    while len(keys_suffices) != prefix_nodes_count:
        keys_suffices.add(randint(25, 250000))

    key_vals = {
        '{}{}'.format(prefix, k): str(randint(3000, 5000))
        for prefix in all_prefixes for k in keys_suffices
    }
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    # Some nodes after prefix nodes
    for _ in range(other_nodes_count):
        node_trie.update(
            randomString(randint(8, 19)).encode(),
            rlp_encode([randomString(15)]))

    for prefix in all_prefixes:
        client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
        proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(
            prefix.encode(), get_value=True)
        encoded = {
            k.encode(): rlp_encode([v])
            for k, v in key_vals.items() if k.startswith(prefix)
        }
        # Check returned values match the actual values
        assert encoded == val
        assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                                  proof_nodes)
        # Check without value
        proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
            prefix.encode(), get_value=False)
        assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                                  proof_nodes)

        # Verify keys with a different prefix
        encoded = {
            k.encode(): rlp_encode([v])
            for k, v in key_vals.items() if not k.startswith(prefix)
        }
        assert not client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                      encoded, proof_nodes)
Exemplo n.º 14
0
def test_get_prefix_nodes():
    trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcd'
    prefix_nibbles = bin_to_nibbles(to_string(prefix))
    key1 = prefix + '1'
    key2 = prefix + '2'
    key3 = prefix + '3'
    trie.update(key1.encode(), rlp_encode(['v1']))
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles)
    # The last node should be a leaf since only 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_LEAF

    # The queried key is larger than prefix, results in blank node
    last_node_ = trie._get_last_node_for_prfx(
        trie.root_node, bin_to_nibbles(to_string(prefix + '5')))
    assert last_node_ == BLANK_NODE

    trie.update(key2.encode(), rlp_encode(['v2']))
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles)
    # The last node should be an extension since more than 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION

    trie.update(key3.encode(), rlp_encode(['v3']))
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles)
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION

    last_node_key = without_terminator(unpack_to_nibbles(last_node[0]))
    # Key for the fetched prefix nodes (ignore last nibble) is same as prefix nibbles
    assert last_node_key[:-1] == prefix_nibbles

    # The extension node is correctly decoded.
    decoded_extension = trie._decode_to_node(last_node[1])
    assert decoded_extension[1] == [b' ', rlp_encode(['v1'])]
    assert decoded_extension[2] == [b' ', rlp_encode(['v2'])]
    assert decoded_extension[3] == [b' ', rlp_encode(['v3'])]
Exemplo n.º 15
0
def test_verify_proof():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    node_trie.update('k1'.encode(), rlp_encode(['v1']))
    node_trie.update('k2'.encode(), rlp_encode(['v2']))

    root_hash_0 = node_trie.root_hash
    p0 = node_trie.produce_spv_proof('k2'.encode())
    p0.append(deepcopy(node_trie.root_node))
    p00 = deepcopy(p0)
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)
    assert p00 == p0

    node_trie.update('k3'.encode(), rlp_encode(['v3']))
    node_trie.update('k4'.encode(), rlp_encode(['v4']))
    node_trie.update('x1'.encode(), rlp_encode(['y1']))
    node_trie.update('x2'.encode(), rlp_encode(['y2']))
    root_hash_1 = node_trie.root_hash

    # Generate 1 proof and then verify that proof
    p1 = node_trie.produce_spv_proof('k1'.encode())
    p1.append(node_trie.root_node)
    assert client_trie.verify_spv_proof(root_hash_1, 'k1'.encode(),
                                        rlp_encode(['v1']), p1)

    p2 = node_trie.produce_spv_proof('x2'.encode())
    p2.append(node_trie.root_node)
    assert client_trie.verify_spv_proof(root_hash_1, 'x2'.encode(),
                                        rlp_encode(['y2']), p2)

    # Generate more than 1 proof and then verify all proofs

    p3 = node_trie.produce_spv_proof('k3'.encode())
    p3.append(node_trie.root_node)

    p4 = node_trie.produce_spv_proof('x1'.encode())
    p4.append(node_trie.root_node)

    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)
    assert client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                        rlp_encode(['y1']), p4)

    # Proof is correct but value is different
    assert not client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                            rlp_encode(['y99']), p4)

    # Verify same proof again
    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)

    assert p00 == p0
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)
Exemplo n.º 16
0
def test_verify_proof():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    node_trie.update('k1'.encode(), rlp_encode(['v1']))
    node_trie.update('k2'.encode(), rlp_encode(['v2']))

    root_hash_0 = node_trie.root_hash
    p0 = node_trie.produce_spv_proof('k2'.encode())
    p0.append(deepcopy(node_trie.root_node))
    p00 = deepcopy(p0)
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)
    assert p00 == p0

    node_trie.update('k3'.encode(), rlp_encode(['v3']))
    node_trie.update('k4'.encode(), rlp_encode(['v4']))
    node_trie.update('x1'.encode(), rlp_encode(['y1']))
    node_trie.update('x2'.encode(), rlp_encode(['y2']))
    root_hash_1 = node_trie.root_hash

    # Generate 1 proof and then verify that proof
    p1 = node_trie.produce_spv_proof('k1'.encode())
    p1.append(node_trie.root_node)
    assert client_trie.verify_spv_proof(root_hash_1, 'k1'.encode(),
                                        rlp_encode(['v1']), p1)

    p2 = node_trie.produce_spv_proof('x2'.encode())
    p2.append(node_trie.root_node)
    assert client_trie.verify_spv_proof(root_hash_1, 'x2'.encode(),
                                        rlp_encode(['y2']), p2)

    # Generate more than 1 proof and then verify all proofs

    p3 = node_trie.produce_spv_proof('k3'.encode())
    p3.append(node_trie.root_node)

    p4 = node_trie.produce_spv_proof('x1'.encode())
    p4.append(node_trie.root_node)

    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)
    assert client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                        rlp_encode(['y1']), p4)

    # Proof is correct but value is different
    assert not client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                            rlp_encode(['y99']), p4)

    # Verify same proof again
    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)

    assert p00 == p0
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)
Exemplo n.º 17
0
def test_verify_proof_generated_using_helper():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    node_trie.update('k1'.encode(), rlp_encode(['v1']))
    node_trie.update('k2'.encode(), rlp_encode(['v2']))

    root_hash_0 = node_trie.root_hash
    p0 = node_trie.generate_state_proof('k2'.encode())
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)

    node_trie.update('k3'.encode(), rlp_encode(['v3']))
    node_trie.update('k4'.encode(), rlp_encode(['v4']))
    node_trie.update('x1'.encode(), rlp_encode(['y1']))
    node_trie.update('x2'.encode(), rlp_encode(['y2']))
    root_hash_1 = node_trie.root_hash

    # Generate 1 proof and then verify that proof
    p1 = node_trie.generate_state_proof('k1'.encode())
    assert client_trie.verify_spv_proof(root_hash_1, 'k1'.encode(),
                                        rlp_encode(['v1']), p1)

    p2 = node_trie.generate_state_proof('x2'.encode())
    assert client_trie.verify_spv_proof(root_hash_1, 'x2'.encode(),
                                        rlp_encode(['y2']), p2)

    # Generate more than 1 proof and then verify all proofs

    p3 = node_trie.generate_state_proof('k3'.encode())

    p4 = node_trie.generate_state_proof('x1'.encode())

    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)
    assert client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                        rlp_encode(['y1']), p4)

    # Proof is correct but value is different
    assert not client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                            rlp_encode(['y99']), p4)

    # Verify same proof again
    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)

    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)

    # Proof generated using non-existent key fails verification
    p5 = node_trie.generate_state_proof('x909'.encode())
    assert not client_trie.verify_spv_proof(root_hash_1, 'x909'.encode(),
                                            rlp_encode(['y909']), p5)
Exemplo n.º 18
0
def test_verify_proof_generated_using_helper():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    node_trie.update('k1'.encode(), rlp_encode(['v1']))
    node_trie.update('k2'.encode(), rlp_encode(['v2']))

    root_hash_0 = node_trie.root_hash
    p0 = node_trie.generate_state_proof('k2'.encode())
    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)

    node_trie.update('k3'.encode(), rlp_encode(['v3']))
    node_trie.update('k4'.encode(), rlp_encode(['v4']))
    node_trie.update('x1'.encode(), rlp_encode(['y1']))
    node_trie.update('x2'.encode(), rlp_encode(['y2']))
    root_hash_1 = node_trie.root_hash

    # Generate 1 proof and then verify that proof
    p1 = node_trie.generate_state_proof('k1'.encode())
    assert client_trie.verify_spv_proof(root_hash_1, 'k1'.encode(),
                                        rlp_encode(['v1']), p1)

    p2 = node_trie.generate_state_proof('x2'.encode())
    assert client_trie.verify_spv_proof(root_hash_1, 'x2'.encode(),
                                        rlp_encode(['y2']), p2)

    # Generate more than 1 proof and then verify all proofs

    p3 = node_trie.generate_state_proof('k3'.encode())

    p4 = node_trie.generate_state_proof('x1'.encode())

    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)
    assert client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                        rlp_encode(['y1']), p4)

    # Proof is correct but value is different
    assert not client_trie.verify_spv_proof(root_hash_1, 'x1'.encode(),
                                            rlp_encode(['y99']), p4)

    # Verify same proof again
    assert client_trie.verify_spv_proof(root_hash_1, 'k3'.encode(),
                                        rlp_encode(['v3']), p3)

    assert client_trie.verify_spv_proof(root_hash_0, 'k2'.encode(),
                                        rlp_encode(['v2']), p0)

    # Proof generated using non-existent key fails verification
    p5 = node_trie.generate_state_proof('x909'.encode())
    assert not client_trie.verify_spv_proof(root_hash_1, 'x909'.encode(),
                                            rlp_encode(['y909']), p5)
Exemplo n.º 19
0
def test_proof_prefix_with_other_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcdefgh'

    other_nodes_count = 1000
    prefix_nodes_count = 100

    # Some nodes before prefix node
    for _ in range(other_nodes_count):
        node_trie.update(
            randomString(randint(8, 19)).encode(),
            rlp_encode([randomString(15)]))

    keys_suffices = set()
    while len(keys_suffices) != prefix_nodes_count:
        keys_suffices.add(randint(25, 250000))

    key_vals = {
        '{}{}'.format(prefix, k): str(randint(3000, 5000))
        for k in keys_suffices
    }
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    # Some nodes after prefix node
    for _ in range(other_nodes_count):
        node_trie.update(
            randomString(randint(8, 19)).encode(),
            rlp_encode([randomString(15)]))

    proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=True)
    encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items()}
    # Check returned values match the actual values
    assert encoded == val
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                              proof_nodes)
    # Check without value
    proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=False)
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash, encoded,
                                              proof_nodes)

    # Change value of one of any random key
    encoded_new = deepcopy(encoded)
    random_key = next(iter(encoded_new.keys()))
    encoded_new[random_key] = rlp_encode(
        [rlp_decode(encoded_new[random_key])[0] + b'2212'])
    assert not client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                  encoded_new, proof_nodes)
Exemplo n.º 20
0
def test_proof_multiple_prefix_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix_1 = 'abcdefgh'
    prefix_2 = 'abcdefxy'  # Prefix overlaps with previous
    prefix_3 = 'pqrstuvw'
    prefix_4 = 'mnoptuvw'  # Suffix overlaps

    all_prefixes = (prefix_1, prefix_2, prefix_3, prefix_4)

    other_nodes_count = 1000
    prefix_nodes_count = 100

    # Some nodes before prefix nodes
    for _ in range(other_nodes_count):
        k, v = randomString(randint(8, 19)).encode(), rlp_encode([randomString(15)])
        node_trie.update(k, v)

    keys_suffices = set()
    while len(keys_suffices) != prefix_nodes_count:
        keys_suffices.add(randint(25, 250000))

    key_vals = {'{}{}'.format(prefix, k): str(randint(3000, 5000))
                for prefix in all_prefixes for k in keys_suffices}
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    # Some nodes after prefix nodes
    for _ in range(other_nodes_count):
        node_trie.update(randomString(randint(8, 19)).encode(),
                         rlp_encode([randomString(15)]))

    for prefix in all_prefixes:
        client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
        proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(
            prefix.encode(), get_value=True)
        encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items() if k.startswith(prefix)}
        # Check returned values match the actual values
        assert encoded == val
        assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                  encoded, proof_nodes)
        # Check without value
        proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
            prefix.encode(), get_value=False)
        assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                  encoded, proof_nodes)

        # Verify keys with a different prefix
        encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items() if
                   not k.startswith(prefix)}
        assert not client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                      encoded, proof_nodes)
Exemplo n.º 21
0
def test_proof_prefix_with_other_nodes():
    node_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    client_trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcdefgh'

    other_nodes_count = 1000
    prefix_nodes_count = 100

    # Some nodes before prefix node
    for _ in range(other_nodes_count):
        node_trie.update(randomString(randint(8, 19)).encode(),
                         rlp_encode([randomString(15)]))

    keys_suffices = set()
    while len(keys_suffices) != prefix_nodes_count:
        keys_suffices.add(randint(25, 250000))

    key_vals = {'{}{}'.format(prefix, k): str(randint(3000, 5000))
                for k in keys_suffices}
    for k, v in key_vals.items():
        node_trie.update(k.encode(), rlp_encode([v]))

    # Some nodes after prefix node
    for _ in range(other_nodes_count):
        node_trie.update(randomString(randint(8, 19)).encode(),
                         rlp_encode([randomString(15)]))

    proof_nodes, val = node_trie.generate_state_proof_for_keys_with_prefix(prefix.encode(), get_value=True)
    encoded = {k.encode(): rlp_encode([v]) for k, v in key_vals.items()}
    # Check returned values match the actual values
    assert encoded == val
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                              encoded, proof_nodes)
    # Check without value
    proof_nodes = node_trie.generate_state_proof_for_keys_with_prefix(
        prefix.encode(), get_value=False)
    assert client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                              encoded, proof_nodes)

    # Change value of one of any random key
    encoded_new = deepcopy(encoded)
    random_key = next(iter(encoded_new.keys()))
    encoded_new[random_key] = rlp_encode([rlp_decode(encoded_new[random_key])[0] + b'2212'])
    assert not client_trie.verify_spv_proof_multi(node_trie.root_hash,
                                                  encoded_new, proof_nodes)
Exemplo n.º 22
0
def test_get_prefix_nodes():
    trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcd'
    prefix_nibbles = bin_to_nibbles(prefix)
    key1 = prefix + '1'
    key2 = prefix + '2'
    key3 = prefix + '3'
    trie.update(key1.encode(), rlp_encode(['v1']))
    seen_prefix = []
    last_node = trie._get_last_node_for_prfx(trie.root_node,
                                             prefix_nibbles,
                                             seen_prfx=seen_prefix)
    # The last node should be a leaf since only 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_LEAF
    # Seen prefix matches the prefix exactly
    assert seen_prefix == []

    # The queried key is larger than prefix, results in blank node
    last_node_ = trie._get_last_node_for_prfx(trie.root_node,
                                              bin_to_nibbles(prefix + '5'), [])
    assert last_node_ == BLANK_NODE

    seen_prefix = []
    trie.update(key2.encode(), rlp_encode(['v2']))
    last_node = trie._get_last_node_for_prfx(trie.root_node,
                                             prefix_nibbles,
                                             seen_prfx=seen_prefix)
    # The last node should be an extension since more than 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert seen_prefix == []

    seen_prefix = []
    trie.update(key3.encode(), rlp_encode(['v3']))
    last_node = trie._get_last_node_for_prfx(trie.root_node,
                                             prefix_nibbles,
                                             seen_prfx=seen_prefix)
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert seen_prefix == []

    last_node_key = without_terminator(unpack_to_nibbles(last_node[0]))
    # Key for the fetched prefix nodes (ignore last nibble) is same as prefix nibbles
    assert last_node_key[:-1] == prefix_nibbles

    # The extension node is correctly decoded.
    decoded_extension = trie._decode_to_node(last_node[1])
    assert decoded_extension[1] == [b' ', rlp_encode(['v1'])]
    assert decoded_extension[2] == [b' ', rlp_encode(['v2'])]
    assert decoded_extension[3] == [b' ', rlp_encode(['v3'])]

    # Add keys with extended prefix
    extended_prefix = '1'
    key4 = prefix + extended_prefix + '85'
    trie.update(key4.encode(), rlp_encode(['v11']))
    key5 = prefix + extended_prefix + '96'
    trie.update(key5.encode(), rlp_encode(['v12']))
    seen_prefix = []
    new_prefix_nibbs = bin_to_nibbles(prefix + extended_prefix)
    last_node = trie._get_last_node_for_prfx(trie.root_node,
                                             new_prefix_nibbs,
                                             seen_prfx=seen_prefix)

    assert trie._get_node_type(last_node) == NODE_TYPE_BRANCH
    assert new_prefix_nibbs == seen_prefix
    assert seen_prefix == bin_to_nibbles(prefix + '1')

    # traverse to the next node
    remaining_key4_nibbs = bin_to_nibbles(key4)[len(seen_prefix):]
    remaining_key5_nibbs = bin_to_nibbles(key5)[len(seen_prefix):]
    next_nibble = remaining_key4_nibbs[0] if remaining_key4_nibbs[
        0] > remaining_key5_nibbs[0] else remaining_key5_nibbs[0]
    next_node = trie._decode_to_node(last_node[next_nibble])

    assert trie._get_node_type(next_node) == NODE_TYPE_BRANCH

    # The 8th index should lead to a node with key '5', key4 ended in '85'
    assert trie._get_node_type(next_node[8]) == NODE_TYPE_LEAF
    assert without_terminator(unpack_to_nibbles(
        next_node[8][0])) == bin_to_nibbles('5')

    # The 9th index should lead to a node with key '6', key5 ended in '96'
    assert trie._get_node_type(next_node[9]) == NODE_TYPE_LEAF
    assert without_terminator(unpack_to_nibbles(
        next_node[9][0])) == bin_to_nibbles('6')

    prefix_1 = prefix + 'efgh'
    prefix_1_nibbles = bin_to_nibbles(prefix_1)
    key1 = prefix_1 + '1'
    key2 = prefix_1 + '2'
    key3 = prefix_1 + '3'

    trie.update(key1.encode(), rlp_encode(['v1']))
    trie.update(key2.encode(), rlp_encode(['v1']))
    trie.update(key3.encode(), rlp_encode(['v1']))

    seen_prefix = []
    last_node = trie._get_last_node_for_prfx(trie.root_node,
                                             prefix_1_nibbles,
                                             seen_prfx=seen_prefix)
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert len(seen_prefix) > 0
    assert starts_with(prefix_1_nibbles, seen_prefix)
Exemplo n.º 23
0
class PruningState(State):
    """
    This class is used to store the
    committed root hash of the trie in the db.
    The committed root hash is only updated once a batch gets written to the
    ledger. It might happen that a few batches are in 3 phase commit and the
    node crashes. Now when the node restarts, it restores the db from the
    committed root hash and all entries for uncommitted batches will be
    ignored
    """

    # SOME KEY THAT DOES NOT COLLIDE WITH ANY STATE VARIABLE'S NAME
    rootHashKey = b'\x88\xc8\x88 \x9a\xa7\x89\x1b'

    def __init__(self, keyValueStorage: KeyValueStorage):
        self._kv = keyValueStorage
        if self.rootHashKey in self._kv:
            rootHash = bytes(self._kv.get(self.rootHashKey))
        else:
            rootHash = BLANK_ROOT
            self._kv.put(self.rootHashKey, BLANK_ROOT)
        self._trie = Trie(PersistentDB(self._kv), rootHash)

    @property
    def head(self):
        # The current head of the state, if the state is a merkle tree then
        # head is the root
        return self._trie.root_node

    @property
    def committedHead(self):
        # The committed head of the state, if the state is a merkle tree then
        # head is the root
        return self._hash_to_node(self.committedHeadHash)

    def get_head_by_hash(self, root_hash):
        # return node of a merkle tree by given hash
        return self._hash_to_node(root_hash)

    def _hash_to_node(self, node_hash):
        if node_hash == BLANK_ROOT:
            return BLANK_NODE
        return self._trie._decode_to_node(node_hash)

    def set(self, key: bytes, value: bytes):
        self._trie.update(key, rlp_encode([value]))

    def get(self, key: bytes, isCommitted: bool = True) -> Optional[bytes]:
        if not isCommitted:
            val = self._trie.get(key)
        else:
            val = self._trie._get(self.committedHead,
                                  bin_to_nibbles(to_string(key)))
        if val:
            return self.get_decoded(val)

    def get_for_root_hash(self, root_hash, key: bytes) -> Optional[bytes]:
        root = self._hash_to_node(root_hash)
        val = self._trie._get(root, bin_to_nibbles(to_string(key)))
        if val:
            return self.get_decoded(val)

    def get_all_leaves_for_root_hash(self, root_hash):
        node = self._hash_to_node(root_hash)
        leaves = self._trie.to_dict(node)
        return leaves

    def remove(self, key: bytes):
        self._trie.delete(key)

    def commit(self, rootHash=None, rootNode=None):
        if rootNode:
            rootHash = self._trie._encode_node(rootNode)
        elif rootHash and isHex(rootHash):
            if isinstance(rootHash, str):
                rootHash = rootHash.encode()
            rootHash = unhexlify(rootHash)
        elif rootHash:
            rootHash = rootHash
        else:
            rootHash = self.headHash
        self._kv.put(self.rootHashKey, rootHash)

    def revertToHead(self, headHash=None):
        head = self._hash_to_node(headHash)
        self._trie.replace_root_hash(self._trie.root_node, head)

    # Proofs are always generated over committed state
    def generate_state_proof(self,
                             key: bytes,
                             root=None,
                             serialize=False,
                             get_value=False):
        return self._trie.generate_state_proof(key,
                                               root,
                                               serialize,
                                               get_value=get_value)

    def generate_state_proof_for_keys_with_prefix(self,
                                                  key_prfx,
                                                  root=None,
                                                  serialize=False,
                                                  get_value=False):
        return self._trie.generate_state_proof_for_keys_with_prefix(
            key_prfx, root, serialize, get_value=get_value)

    @staticmethod
    def verify_state_proof(root, key, value, proof_nodes, serialized=False):
        encoded_key, encoded_value = PruningState.encode_kv_for_verification(
            key, value)
        return Trie.verify_spv_proof(root, encoded_key, encoded_value,
                                     proof_nodes, serialized)

    @staticmethod
    def verify_state_proof_multi(root,
                                 key_values,
                                 proof_nodes,
                                 serialized=False):
        encoded_key_values = dict(
            PruningState.encode_kv_for_verification(k, v)
            for k, v in key_values.items())
        return Trie.verify_spv_proof_multi(root, encoded_key_values,
                                           proof_nodes, serialized)

    @staticmethod
    def encode_kv_for_verification(key, value):
        encoded_key = key.encode() if isinstance(key, str) else key
        encoded_value = rlp_encode([value]) if value is not None else b''
        return encoded_key, encoded_value

    @property
    def as_dict(self):
        d = self._trie.to_dict()
        return {k: self.get_decoded(v) for k, v in d.items()}

    @property
    def headHash(self):
        """
        The hash of the current head of the state, if the state is a merkle
        tree then hash of the root
        :return:
        """
        return self._trie.root_hash

    @property
    def committedHeadHash(self):
        return self._kv.get(self.rootHashKey)

    @property
    def closed(self):
        return not self._kv or self._kv.closed

    @property
    def isEmpty(self):
        return self._kv and self.committedHeadHash == BLANK_ROOT

    def close(self):
        if self._kv:
            self._kv.close()
            self._kv = None

    @staticmethod
    def get_decoded(encoded):
        return rlp_decode(encoded)[0]
Exemplo n.º 24
0
class PruningState(State):
    # This class is used to store the
    # committed root hash of the trie in the db.
    # The committed root hash is only updated once a batch gets written to the
    # ledger. It might happen that a few batches are in 3 phase commit and the
    # node crashes. Now when the node restarts, it restores the db from the
    # committed root hash and all entries for uncommitted batches will be
    # ignored

    # some key that does not collide with any state variable's name
    rootHashKey = b'\x88\xc8\x88 \x9a\xa7\x89\x1b'

    def __init__(self, keyValueStorage: KeyValueStorage):
        self._kv = keyValueStorage
        if self.rootHashKey in self._kv:
            rootHash = bytes(self._kv.get(self.rootHashKey))
        else:
            rootHash = BLANK_ROOT
            self._kv.put(self.rootHashKey, BLANK_ROOT)
        self._trie = Trie(PersistentDB(self._kv), rootHash)

    @property
    def head(self):
        # The current head of the state, if the state is a merkle tree then
        # head is the root
        return self._trie.root_node

    @property
    def committedHead(self):
        # The committed head of the state, if the state is a merkle tree then
        # head is the root
        if self.committedHeadHash == BLANK_ROOT:
            return BLANK_NODE
        else:
            return self._trie._decode_to_node(self.committedHeadHash)

    def set(self, key: bytes, value: bytes):
        self._trie.update(key, rlp_encode([value]))

    def get(self, key: bytes, isCommitted: bool = True):
        if not isCommitted:
            val = self._trie.get(key)
        else:
            val = self._trie._get(self.committedHead,
                                  bin_to_nibbles(to_string(key)))
        if val:
            return rlp_decode(val)[0]

    def remove(self, key: bytes):
        self._trie.delete(key)

    def commit(self, rootHash=None, rootNode=None):
        if rootNode:
            rootHash = self._trie._encode_node(rootNode)
        elif rootHash and isHex(rootHash):
            if isinstance(rootHash, str):
                rootHash = rootHash.encode()
            rootHash = unhexlify(rootHash)
        elif rootHash:
            rootHash = rootHash
        else:
            rootHash = self.headHash
        self._kv.put(self.rootHashKey, rootHash)

    def revertToHead(self, headHash=None):
        if headHash != BLANK_ROOT:
            head = self._trie._decode_to_node(headHash)
        else:
            head = BLANK_NODE
        self._trie.replace_root_hash(self._trie.root_node, head)

    @property
    def as_dict(self):
        d = self._trie.to_dict()
        return {k: rlp_decode(v)[0] for k, v in d.items()}

    @property
    def headHash(self):
        """
        The hash of the current head of the state, if the state is a merkle
        tree then hash of the root
        :return:
        """
        return self._trie.root_hash

    @property
    def committedHeadHash(self):
        return self._kv.get(self.rootHashKey)

    @property
    def isEmpty(self):
        return self.committedHeadHash == BLANK_ROOT

    def close(self):
        if self._kv:
            self._kv.close()
            self._kv = None
def test_get_values_at_roots_in_memory():
    # Update key with different values but preserve root after each update
    # Check values of keys with different previous roots and check that they
    # are correct
    trie = Trie(PersistentDB(KeyValueStorageInMemory()))

    trie.update('k1'.encode(), rlp_encode(['v1']))
    # print state.root_hash.encode('hex')
    # print state.root_node

    val = trie.get('k1')
    print(rlp_decode(val))
    oldroot1 = trie.root_node
    old_root1_hash = trie.root_hash
    assert trie._decode_to_node(old_root1_hash) == oldroot1
    trie.update('k1'.encode(), rlp_encode(['v1a']))
    val = trie.get('k1')
    assert rlp_decode(val) == [b'v1a', ]

    # Already saved roots help in getting previous values
    oldval = trie.get_at(oldroot1, 'k1')
    assert rlp_decode(oldval) == [b'v1', ]
    oldroot1a = trie.root_node

    trie.update('k1'.encode(), rlp_encode([b'v1b']))
    val = trie.get('k1')
    assert rlp_decode(val) == [b'v1b']

    oldval = trie.get_at(oldroot1a, 'k1')
    assert rlp_decode(oldval) == [b'v1a', ]

    oldval = trie.get_at(oldroot1, 'k1')
    assert rlp_decode(oldval) == [b'v1', ]

    oldroot1b = trie.root_node

    trie.update('k1'.encode(), rlp_encode([b'v1c']))
    val = trie.get('k1')
    assert rlp_decode(val) == [b'v1c', ]

    oldval = trie.get_at(oldroot1b, 'k1')
    assert rlp_decode(oldval) == [b'v1b', ]

    oldval = trie.get_at(oldroot1a, 'k1')
    assert rlp_decode(oldval) == [b'v1a', ]

    oldval = trie.get_at(oldroot1, 'k1')
    assert rlp_decode(oldval) == [b'v1', ]

    oldroot1c = trie.root_node

    trie.delete('k1'.encode())
    assert trie.get('k1') == BLANK_NODE

    oldval = trie.get_at(oldroot1c, 'k1')
    assert rlp_decode(oldval) == [b'v1c', ]

    oldval = trie.get_at(oldroot1b, 'k1')
    assert rlp_decode(oldval) == [b'v1b', ]

    oldval = trie.get_at(oldroot1a, 'k1')
    assert rlp_decode(oldval) == [b'v1a', ]

    oldval = trie.get_at(oldroot1, 'k1')
    assert rlp_decode(oldval) == [b'v1', ]

    trie.root_node = oldroot1c
    val = trie.get('k1')
    assert rlp_decode(val) == [b'v1c', ]

    trie.root_node = oldroot1
    val = trie.get('k1')
    assert rlp_decode(val) == [b'v1', ]
Exemplo n.º 26
0
class PruningState(State):
    """
    This class is used to store the
    committed root hash of the trie in the db.
    The committed root hash is only updated once a batch gets written to the
    ledger. It might happen that a few batches are in 3 phase commit and the
    node crashes. Now when the node restarts, it restores the db from the
    committed root hash and all entries for uncommitted batches will be
    ignored
    """

    # SOME KEY THAT DOES NOT COLLIDE WITH ANY STATE VARIABLE'S NAME
    rootHashKey = b'\x88\xc8\x88 \x9a\xa7\x89\x1b'

    def __init__(self, keyValueStorage: KeyValueStorage):
        self._kv = keyValueStorage
        if self.rootHashKey in self._kv:
            rootHash = bytes(self._kv.get(self.rootHashKey))
        else:
            rootHash = BLANK_ROOT
            self._kv.put(self.rootHashKey, BLANK_ROOT)
        self._trie = Trie(
            PersistentDB(self._kv),
            rootHash)

    @property
    def head(self):
        # The current head of the state, if the state is a merkle tree then
        # head is the root
        return self._trie.root_node

    @property
    def committedHead(self):
        # The committed head of the state, if the state is a merkle tree then
        # head is the root
        return self._hash_to_node(self.committedHeadHash)

    def get_head_by_hash(self, root_hash):
        # return node of a merkle tree by given hash
        return self._hash_to_node(root_hash)

    def _hash_to_node(self, node_hash):
        if node_hash == BLANK_ROOT:
            return BLANK_NODE
        return self._trie._decode_to_node(node_hash)

    def set(self, key: bytes, value: bytes):
        self._trie.update(key, rlp_encode([value]))

    def get(self, key: bytes, isCommitted: bool = True) -> Optional[bytes]:
        if not isCommitted:
            val = self._trie.get(key)
        else:
            val = self._trie._get(self.committedHead,
                                  bin_to_nibbles(to_string(key)))
        if val:
            return self.get_decoded(val)

    def get_for_root_hash(self, root_hash, key: bytes) -> Optional[bytes]:
        root = self._hash_to_node(root_hash)
        val = self._trie._get(root,
                              bin_to_nibbles(to_string(key)))
        if val:
            return self.get_decoded(val)

    def get_all_leaves_for_root_hash(self, root_hash):
        node = self._hash_to_node(root_hash)
        leaves = self._trie.to_dict(node)
        return leaves

    def remove(self, key: bytes):
        self._trie.delete(key)

    def commit(self, rootHash=None, rootNode=None):
        if rootNode:
            rootHash = self._trie._encode_node(rootNode)
        elif rootHash and isHex(rootHash):
            if isinstance(rootHash, str):
                rootHash = rootHash.encode()
            rootHash = unhexlify(rootHash)
        elif rootHash:
            rootHash = rootHash
        else:
            rootHash = self.headHash
        self._kv.put(self.rootHashKey, rootHash)

    def revertToHead(self, headHash=None):
        head = self._hash_to_node(headHash)
        self._trie.replace_root_hash(self._trie.root_node, head)

    # Proofs are always generated over committed state
    def generate_state_proof(self, key: bytes, root=None, serialize=False, get_value=False):
        return self._trie.generate_state_proof(key, root, serialize, get_value=get_value)

    def generate_state_proof_for_keys_with_prefix(self, key_prfx, root=None,
                                                  serialize=False, get_value=False):
        return self._trie.generate_state_proof_for_keys_with_prefix(key_prfx, root,
                                                                    serialize, get_value=get_value)

    @staticmethod
    def verify_state_proof(root, key, value, proof_nodes, serialized=False):
        encoded_key, encoded_value = PruningState.encode_kv_for_verification(key, value)
        return Trie.verify_spv_proof(root, encoded_key, encoded_value,
                                     proof_nodes, serialized)

    @staticmethod
    def verify_state_proof_multi(root, key_values, proof_nodes, serialized=False):
        encoded_key_values = dict(PruningState.encode_kv_for_verification(k, v) for k, v in key_values.items())
        return Trie.verify_spv_proof_multi(root, encoded_key_values, proof_nodes, serialized)

    @staticmethod
    def encode_kv_for_verification(key, value):
        encoded_key = key.encode() if isinstance(key, str) else key
        encoded_value = rlp_encode([value]) if value is not None else b''
        return encoded_key, encoded_value

    @property
    def as_dict(self):
        d = self._trie.to_dict()
        return {k: self.get_decoded(v) for k, v in d.items()}

    @property
    def headHash(self):
        """
        The hash of the current head of the state, if the state is a merkle
        tree then hash of the root
        :return:
        """
        return self._trie.root_hash

    @property
    def committedHeadHash(self):
        return self._kv.get(self.rootHashKey)

    @property
    def isEmpty(self):
        return self.committedHeadHash == BLANK_ROOT

    def close(self):
        if self._kv:
            self._kv.close()
            self._kv = None

    @staticmethod
    def get_decoded(encoded):
        return rlp_decode(encoded)[0]
Exemplo n.º 27
0
def test_get_prefix_nodes():
    trie = Trie(PersistentDB(KeyValueStorageInMemory()))
    prefix = 'abcd'
    prefix_nibbles = bin_to_nibbles(prefix)
    key1 = prefix + '1'
    key2 = prefix + '2'
    key3 = prefix + '3'
    trie.update(key1.encode(), rlp_encode(['v1']))
    seen_prefix = []
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles,
                                             seen_prfx=seen_prefix)
    # The last node should be a leaf since only 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_LEAF
    # Seen prefix matches the prefix exactly
    assert seen_prefix == []

    # The queried key is larger than prefix, results in blank node
    last_node_ = trie._get_last_node_for_prfx(trie.root_node,
                                              bin_to_nibbles(prefix + '5'), [])
    assert last_node_ == BLANK_NODE

    seen_prefix = []
    trie.update(key2.encode(), rlp_encode(['v2']))
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles,
                                             seen_prfx=seen_prefix)
    # The last node should be an extension since more than 1 key
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert seen_prefix == []

    seen_prefix = []
    trie.update(key3.encode(), rlp_encode(['v3']))
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_nibbles,
                                             seen_prfx=seen_prefix)
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert seen_prefix == []

    last_node_key = without_terminator(unpack_to_nibbles(last_node[0]))
    # Key for the fetched prefix nodes (ignore last nibble) is same as prefix nibbles
    assert last_node_key[:-1] == prefix_nibbles

    # The extension node is correctly decoded.
    decoded_extension = trie._decode_to_node(last_node[1])
    assert decoded_extension[1] == [b' ', rlp_encode(['v1'])]
    assert decoded_extension[2] == [b' ', rlp_encode(['v2'])]
    assert decoded_extension[3] == [b' ', rlp_encode(['v3'])]

    # Add keys with extended prefix
    extended_prefix = '1'
    key4 = prefix + extended_prefix + '85'
    trie.update(key4.encode(), rlp_encode(['v11']))
    key5 = prefix + extended_prefix + '96'
    trie.update(key5.encode(), rlp_encode(['v12']))
    seen_prefix = []
    new_prefix_nibbs = bin_to_nibbles(prefix + extended_prefix)
    last_node = trie._get_last_node_for_prfx(trie.root_node, new_prefix_nibbs,
                                             seen_prfx=seen_prefix)

    assert trie._get_node_type(last_node) == NODE_TYPE_BRANCH
    assert new_prefix_nibbs == seen_prefix
    assert seen_prefix == bin_to_nibbles(prefix + '1')

    # traverse to the next node
    remaining_key4_nibbs = bin_to_nibbles(key4)[len(seen_prefix):]
    remaining_key5_nibbs = bin_to_nibbles(key5)[len(seen_prefix):]
    next_nibble = remaining_key4_nibbs[0] if remaining_key4_nibbs[0] > remaining_key5_nibbs[0] else remaining_key5_nibbs[0]
    next_node = trie._decode_to_node(last_node[next_nibble])

    assert trie._get_node_type(next_node) == NODE_TYPE_BRANCH

    # The 8th index should lead to a node with key '5', key4 ended in '85'
    assert trie._get_node_type(next_node[8]) == NODE_TYPE_LEAF
    assert without_terminator(unpack_to_nibbles(next_node[8][0])) == bin_to_nibbles('5')

    # The 9th index should lead to a node with key '6', key5 ended in '96'
    assert trie._get_node_type(next_node[9]) == NODE_TYPE_LEAF
    assert without_terminator(unpack_to_nibbles(next_node[9][0])) == bin_to_nibbles('6')

    prefix_1 = prefix + 'efgh'
    prefix_1_nibbles = bin_to_nibbles(prefix_1)
    key1 = prefix_1 + '1'
    key2 = prefix_1 + '2'
    key3 = prefix_1 + '3'

    trie.update(key1.encode(), rlp_encode(['v1']))
    trie.update(key2.encode(), rlp_encode(['v1']))
    trie.update(key3.encode(), rlp_encode(['v1']))

    seen_prefix = []
    last_node = trie._get_last_node_for_prfx(trie.root_node, prefix_1_nibbles,
                                             seen_prfx=seen_prefix)
    assert trie._get_node_type(last_node) == NODE_TYPE_EXTENSION
    assert len(seen_prefix) > 0
    assert starts_with(prefix_1_nibbles, seen_prefix)