Exemplo n.º 1
0
def _get_id_stats(glyphs, k=None):
   import stats
   if len(glyphs) < 3:
      return (len(glyphs),1.0, 1.0, 1.0)
   if k is None:
      k = kNN()
   distances = k.unique_distances(glyphs)
   return (len(glyphs),stats.lmean(distances), stats.lstdev(distances), stats.lmedian(distances))
Exemplo n.º 2
0
def _get_id_stats(glyphs, k=None):
   import stats
   if len(glyphs) < 3:
      return (len(glyphs),1.0, 1.0, 1.0)
   if k is None:
      k = kNN()
   distances = k.unique_distances(glyphs)
   return (len(glyphs),stats.lmean(distances), stats.lstdev(distances), stats.lmedian(distances))
def characteristic_value(OD_list):
    if characteristic_value_type == 'median':
        return float('%1.4f'%(stats.lmedian(OD_list)))
    elif characteristic_value_type == 'max':
        return float('%1.4f'%(max(OD_list)))
    else:
        print 'characteristic value type not defined, enter median or max'
        exit()
def characteristic_value(plate_data):
    for keys in plate_data:
        if not characteristic_value_of_time_course.has_key(keys):
            if characteristic_value_type == 'median':
                characteristic_value_of_time_course[keys] = stats.lmedian(plate_data[keys])
            else:
                characteristic_value_of_time_course[keys] = max(plate_data[keys])
    for keys in characteristic_value_of_time_course:
        print keys, characteristic_value_of_time_course[keys]
Exemplo n.º 5
0
    rdp_list = []
    rdp_tmp = 0.0
    if icmp_len < bn_len :
      loop_count = icmp_len
    for i in range(loop_count) :
      if brunet_time_list[i] != -1.0 and icmp_time_list[i] != -1.0 :
        if brunet_time_list[i] != 0.0 and icmp_time_list[i] != 0.0 : 
          bin_index = math.floor(icmp_time_list[i]/binsize)*binsize
          rdp_tmp = brunet_time_list[i]/icmp_time_list[i]
          tmp1_list = []
          if bin_index in timebin_to_time_list :
            tmp1_list = timebin_to_time_list[bin_index]
            tmp1_list.append(rdp_tmp)
          else :
            timebin_to_time_list[bin_index] = [rdp_tmp]
          timebin_to_time_list[bin_index] = tmp1_list

#print timebin_to_time_list

bin_final_list = timebin_to_time_list.keys()
bin_final_list.sort()

for bin in bin_final_list :
  if len(timebin_to_time_list[bin]) > 0:
    tmed = stats.lmedian(timebin_to_time_list[bin],100000 )
    tmp_scor_list = timebin_to_time_list[bin]
    tmp_scor_list.sort()
    nin = int( math.floor( 0.9*len(tmp_scor_list) ) )
    tstdband = tmp_scor_list[nin]
    print bin, min(tmp_scor_list),tmed ,tstdband
Exemplo n.º 6
0
 def median(self):
     return float('%1.4f'%stats.lmedian(self.datapoints))