Exemplo n.º 1
0
from statsmodels.tsa.arma_mle import Arma  # local import
from statsmodels.tsa.arima_process import arma_generate_sample

examples = ['arma']
if 'arma' in examples:

    print("\nExample 1")
    print('----------')
    ar = [1.0, -0.8]
    ma = [1.0, 0.5]
    y1 = arma_generate_sample(ar, ma, 1000, 0.1)
    y1 -= y1.mean()  #no mean correction/constant in estimation so far

    arma1 = Arma(y1)
    arma1.nar = 1
    arma1.nma = 1
    arma1res = arma1.fit_mle(order=(1, 1), method='fmin')
    print(arma1res.params)

    #Warning need new instance otherwise results carry over
    arma2 = Arma(y1)
    arma2.nar = 1
    arma2.nma = 1
    res2 = arma2.fit(method='bfgs')
    print(res2.params)
    print(res2.model.hessian(res2.params))
    print(ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params))
    arest = tsa.arima.ARIMA(y1)
    resls = arest.fit((1, 0, 1))
    print(resls[0])
    print(resls[1])
Exemplo n.º 2
0
print 'truelhs', np.r_[ar[1:], ma[1:]]

###bug in current version, fixed in Skipper and 1 more
###arr[1:q,:] = params[p+k:p+k+q]  # p to p+q short params are MA coeffs
###ValueError: array dimensions are not compatible for copy
##arma22 = ARMA_kf(y22, constant=False, order=(2,2))
##res = arma22.fit(start_params=start_params)
##print res.params

print '\nARIMA new'
arest2 = Arma(y22)

naryw = 4  #= 30
resyw = sm.regression.yule_walker(y22, order=naryw, inv=True)
arest2.nar = naryw
arest2.nma = 0
e = arest2.geterrors(np.r_[1, -resyw[0]])
x = sm.tsa.tsatools.lagmat2ds(np.column_stack((y22, e)),
                              3,
                              dropex=1,
                              trim='both')
yt = x[:, 0]
xt = x[:, 1:]
res_ols = sm.OLS(yt, xt).fit()
print 'hannan_rissannen'
print res_ols.params
start_params = res_ols.params
start_params_mle = np.r_[-res_ols.params[:2], res_ols.params[2:],
                         #res_ols.scale]
                         #areste.var()]
                         np.sqrt(res_ols.scale)]
Exemplo n.º 3
0
###bug in current version, fixed in Skipper and 1 more
###arr[1:q,:] = params[p+k:p+k+q]  # p to p+q short params are MA coeffs
###ValueError: array dimensions are not compatible for copy
##from statsmodels.tsa.arima import ARMA as ARMA_kf
##arma22 = ARMA_kf(y22, constant=False, order=(2,2))
##res = arma22.fit(start_params=start_params)
##print res.params

print('\nARIMA new')
arest2 = Arma(y22)

naryw = 4  #= 30
resyw = sm.regression.yule_walker(y22, order=naryw, inv=True)
arest2.nar = naryw
arest2.nma = 0
e = arest2.geterrors(np.r_[1, -resyw[0]])
x=sm.tsa.tsatools.lagmat2ds(np.column_stack((y22,e)),3,dropex=1,
                            trim='both')
yt = x[:,0]
xt = x[:,1:]
res_ols = sm.OLS(yt, xt).fit()
print('hannan_rissannen')
print(res_ols.params)
start_params = res_ols.params
start_params_mle = np.r_[-res_ols.params[:2],
                          res_ols.params[2:],
                          #res_ols.scale]
                          #areste.var()]
                          np.sqrt(res_ols.scale)]
#need to iterate, ar1 too large ma terms too small
Exemplo n.º 4
0
print('time used:', t1-t0)

t1=time()
print("CSS MLE - ARMA Class")
arma2.fit(order=(2,2), trend='nc', method="css")
t2=time()
arma2.llf = arma2.loglike_css(arma2._invtransparams(arma2.params))
print("params: ", arma2.params)
print("sigma: ", arma2.sigma2**.5)
results += ["css kalmanf", arma2.params, arma2.sigma2**.5, arma2.llf]
print('time used:', t2-t1)

print("Arma.fit_mle results")
# have to set nar and nma manually
arma1.nar = 2
arma1.nma = 2
t2=time()
ret = arma1.fit_mle()
t3=time()
print("params, first 4, sigma, last 1 ", ret.params)
results += ["Arma.fit_mle ", ret.params[:4], ret.params[-1], ret.llf]
print('time used:', t3-t2)

print("Arma.fit method = \"ls\"")
t3=time()
ret2 = arma1.fit(order=(2,0,2), method="ls")
t4=time()
print(ret2[0])
results += ["Arma.fit ls", ret2[0]]
print('time used:', t4-t3)
Exemplo n.º 5
0
print('time used:', t1 - t0)

t1 = time()
print("CSS MLE - ARMA Class")
arma2.fit(order=(2, 2), trend='nc', method="css")
t2 = time()
arma2.llf = arma2.loglike_css(arma2._invtransparams(arma2.params))
print("params: ", arma2.params)
print("sigma: ", arma2.sigma2**.5)
results += ["css kalmanf", arma2.params, arma2.sigma2**.5, arma2.llf]
print('time used:', t2 - t1)

print("Arma.fit_mle results")
# have to set nar and nma manually
arma1.nar = 2
arma1.nma = 2
t2 = time()
ret = arma1.fit_mle()
t3 = time()
print("params, first 4, sigma, last 1 ", ret.params)
results += ["Arma.fit_mle ", ret.params[:4], ret.params[-1], ret.llf]
print('time used:', t3 - t2)

print("Arma.fit method = \"ls\"")
t3 = time()
ret2 = arma1.fit(order=(2, 0, 2), method="ls")
t4 = time()
print(ret2[0])
results += ["Arma.fit ls", ret2[0]]
print('time used:', t4 - t3)
Exemplo n.º 6
0
from statsmodels.tsa.arma_mle import Arma  # local import
from statsmodels.tsa.arima_process import arma_generate_sample

examples = ['arma']
if 'arma' in examples:

    print "\nExample 1"
    print '----------'
    ar = [1.0, -0.8]
    ma = [1.0,  0.5]
    y1 = arma_generate_sample(ar,ma,1000,0.1)
    y1 -= y1.mean() #no mean correction/constant in estimation so far

    arma1 = Arma(y1)
    arma1.nar = 1
    arma1.nma = 1
    arma1res = arma1.fit_mle(order=(1,1), method='fmin')
    print arma1res.params

    #Warning need new instance otherwise results carry over
    arma2 = Arma(y1)
    arma2.nar = 1
    arma2.nma = 1
    res2 = arma2.fit(method='bfgs')
    print res2.params
    print res2.model.hessian(res2.params)
    print ndt.Hessian(arma1.loglike, stepMax=1e-2)(res2.params)
    arest = tsa.arima.ARIMA(y1)
    resls = arest.fit((1,0,1))
    print resls[0]
    print resls[1]