Exemplo n.º 1
0
def test_autoreg_append_deterministic(append_data):
    y = append_data.y
    y_oos = append_data.y_oos
    y_both = append_data.y_both
    x = append_data.x
    x_oos = append_data.x_oos
    x_both = append_data.x_both

    terms = [TimeTrend(constant=True, order=1), Seasonality(12)]
    dp = DeterministicProcess(y.index, additional_terms=terms)

    res = AutoReg(y, lags=3, trend="n", deterministic=dp).fit()
    res_append = res.append(y_oos, refit=True)
    res_direct = AutoReg(y_both,
                         lags=3,
                         trend="n",
                         deterministic=dp.apply(y_both.index)).fit()
    assert_allclose(res_append.params, res_direct.params)

    res_np = AutoReg(np.asarray(y), lags=3, trend="n", deterministic=dp).fit()
    res_append_np = res_np.append(np.asarray(y_oos))
    assert_allclose(res_np.params, res_append_np.params)

    res = AutoReg(y, exog=x, lags=3, trend="n", deterministic=dp).fit()
    res_append = res.append(y_oos, exog=x_oos, refit=True)
    res_direct = AutoReg(
        y_both,
        exog=x_both,
        lags=3,
        trend="n",
        deterministic=dp.apply(y_both.index),
    ).fit()
    assert_allclose(res_append.params, res_direct.params)
Exemplo n.º 2
0
def test_drop_two_consants(time_index):
    tt = TimeTrend(constant=True, order=1)
    dp = DeterministicProcess(
        time_index, constant=True, additional_terms=[tt], drop=True
    )
    assert dp.in_sample().shape[1] == 2
    dp2 = DeterministicProcess(time_index, additional_terms=[tt], drop=True)
    pd.testing.assert_frame_equal(dp.in_sample(), dp2.in_sample())
Exemplo n.º 3
0
def test_deterministic(reset_randomstate):
    y = pd.Series(np.random.normal(size=200))
    terms = [TimeTrend(constant=True, order=1), Seasonality(12)]
    dp = DeterministicProcess(y.index, additional_terms=terms)
    m = AutoReg(y, trend="n", seasonal=False, lags=2, deterministic=dp)
    res = m.fit()
    m2 = AutoReg(y, trend="ct", seasonal=True, lags=2, period=12)
    res2 = m2.fit()
    assert_almost_equal(np.asarray(res.params), np.asarray(res2.params))
    with pytest.warns(RuntimeWarning, match="When using deterministic, trend"):
        AutoReg(y, trend="ct", seasonal=False, lags=2, deterministic=dp)
Exemplo n.º 4
0
def test_drop():
    index = pd.RangeIndex(0, 200)
    dummy = DummyTerm()
    str(dummy)
    assert dummy != TimeTrend()
    dp = DeterministicProcess(index, additional_terms=[dummy], drop=True)
    in_samp = dp.in_sample()
    assert in_samp.shape == (200, 4)
    oos = dp.out_of_sample(37)
    assert oos.shape == (37, 4)
    assert list(oos.columns) == list(in_samp.columns)
    valid = ("const", "trend", "dummy", "normal")
    for valid_col in valid:
        assert sum([1 for col in oos if valid_col in col]) == 1
Exemplo n.º 5
0
def test_additional_terms(time_index):
    add_terms = [TimeTrend(True, order=1)]
    dp = DeterministicProcess(time_index, additional_terms=add_terms)
    dp2 = DeterministicProcess(time_index, constant=True, order=1)
    pd.testing.assert_frame_equal(dp.in_sample(), dp2.in_sample())
    with pytest.raises(ValueError,
                       match="One or more terms in additional_terms"):
        DeterministicProcess(time_index,
                             additional_terms=add_terms + add_terms)
    with pytest.raises(ValueError,
                       match="One or more terms in additional_terms"):
        DeterministicProcess(time_index,
                             constant=True,
                             order=1,
                             additional_terms=add_terms)
Exemplo n.º 6
0
# This is equivalent to using the integer values 58 and 70.

det_proc.range(58, 70)

# ## Advanced Construction
#
# Deterministic processes with features not supported directly through the
# constructor can be created using `additional_terms` which accepts a list
# of `DetermisticTerm`. Here we create a deterministic process with two
# seasonal components: day-of-week with a 5 day period and an annual
# captured through a Fourier component with a period of 365.25 days.

from statsmodels.tsa.deterministic import Fourier, Seasonality, TimeTrend

index = pd.period_range("2020-03-01", freq="D", periods=2 * 365)
tt = TimeTrend(constant=True)
four = Fourier(period=365.25, order=2)
seas = Seasonality(period=7)
det_proc = DeterministicProcess(index, additional_terms=[tt, seas, four])
det_proc.in_sample().head(28)

# ## Custom Deterministic Terms
#
# The `DetermisticTerm` Abstract Base Class is designed to be subclassed
# to help users write custom deterministic terms.  We next show two
# examples. The first is a broken time trend that allows a break after a
# fixed number of periods. The second is a "trick" deterministic term that
# allows exogenous data, which is not really a deterministic process, to be
# treated as if was deterministic.  This lets use simplify gathering the
# terms needed for forecasting.
#
Exemplo n.º 7
0
def test_time_trend_smoke(index, forecast_index):
    tt = TimeTrend(True, 2)
    tt.in_sample(index)
    steps = 83 if forecast_index is None else len(forecast_index)
    warn = None
    if type(index) is NumericIndex and np.any(np.diff(index) != 1):
        warn = UserWarning
    with pytest.warns(warn):
        tt.out_of_sample(steps, index, forecast_index)
    str(tt)
    hash(tt)
    assert isinstance(tt.order, int)
    assert isinstance(tt._constant, bool)
    assert TimeTrend.from_string("ctt") == tt
    assert TimeTrend.from_string("ct") != tt
    assert TimeTrend.from_string("t") != tt
    assert TimeTrend.from_string("n") != tt
    assert Seasonality(12) != tt
    tt0 = TimeTrend(False, 0)
    tt0.in_sample(index)
    str(tt0)
Exemplo n.º 8
0
def test_time_trend(index):
    tt = TimeTrend(constant=True)
    const = tt.in_sample(index)
    assert const.shape == (index.shape[0], 1)
    assert np.all(const == 1)
    pd.testing.assert_index_equal(const.index, index)
    warn = None
    if type(index) is NumericIndex and np.any(np.diff(index) != 1):
        warn = UserWarning
    with pytest.warns(warn):
        const_fcast = tt.out_of_sample(23, index)
    assert np.all(const_fcast == 1)

    tt = TimeTrend(constant=False)
    empty = tt.in_sample(index)
    assert empty.shape == (index.shape[0], 0)

    tt = TimeTrend(constant=False, order=2)
    t2 = tt.in_sample(index)
    assert t2.shape == (index.shape[0], 2)
    assert list(t2.columns) == ["trend", "trend_squared"]

    tt = TimeTrend(constant=True, order=2)
    final = tt.in_sample(index)
    expected = pd.concat([const, t2], axis=1)
    pd.testing.assert_frame_equal(final, expected)

    tt = TimeTrend(constant=True, order=2)
    short = tt.in_sample(index[:-50])
    with pytest.warns(warn):
        remainder = tt.out_of_sample(50, index[:-50])
    with pytest.warns(warn):
        direct = tt.out_of_sample(steps=50,
                                  index=index[:-50],
                                  forecast_index=index[-50:])
    combined = pd.concat([short, remainder], axis=0)
    if isinstance(index, (pd.DatetimeIndex, pd.RangeIndex)):
        pd.testing.assert_frame_equal(combined, final)
    combined = pd.concat([short, direct], axis=0)
    pd.testing.assert_frame_equal(combined, final, check_index_type=False)
Exemplo n.º 9
0
def test_invalid_formcast_index(index):
    tt = TimeTrend(order=4)
    with pytest.raises(ValueError, match="The number of values in forecast_"):
        tt.out_of_sample(10, index, pd.RangeIndex(11))