Exemplo n.º 1
0
plot_acf(airpassengers_train, ax7)
ax3.set_title('ACF of seasonal series')

plot_pacf(airpassengers_train, ax8)
ax4.set_title('PACF of seasonal series')

plt.show()


# %%
sarimax = SARIMAX(airpassengers_train, order=(3,1,1), seasonal_order=(0,1,0,12)).fit()
sarimax.summary()


# %%
sarimax.plot_diagnostics(figsize=(16, 8))
plt.show()


# %%
sarimax_forecast = sarimax.get_forecast(24)
sarimax_forecast_conf_int = sarimax_forecast.conf_int()


# %%
plt.plot(airpassengers_train, label='train')
plt.plot(airpassengers_test, label='test')
plt.plot(sarimax_forecast.predicted_mean, label='forecast')


plt.fill_between(sarimax_forecast_conf_int.index,
Exemplo n.º 2
0
s = 'GDPC1'  # real gdp, seasonally adjusted
df = alf(s, log=1, diff=1, start=19591201, freq='Q').loc[:20191231].dropna()
df.index = pd.DatetimeIndex(df.index.astype(str), freq='infer')
df_train = df[df.index <= '2017-12-31']
df_test = df[df.index > '2017-12-31']
lags = ar_select_order(df_train, maxlag=13, ic='bic', old_names=False).ar_lags
print('(BIC) lags= ', len(lags), ':', lags)

# AR and SARIMAX
## AR(p) is simplest time-model, can nest in SARIMAX(p,d,q,s) with
## moving average MA(q), integration order I(d), seasonality S(s), exogenous X
from statsmodels.tsa.statespace.sarimax import SARIMAX
adf = alf(s, log=1, freq='Q').loc[19591201:20171231]
adf.index = pd.DatetimeIndex(adf.index.astype(str), freq='infer')
arima = SARIMAX(adf, order=(2, 1, 0), trend='c').fit()
fig = arima.plot_diagnostics(figsize=(10, 6))
plt.tight_layout(pad=2)
plt.savefig(os.path.join(imgdir, 'ar.jpg'))
plt.show()
arima.summary()

# Forecasting
## One-step ahead predictions
model = AutoReg(df_train, lags=lags, old_names=False).fit()
print(model.summary())

# Observations to predict are from the test split
from sklearn.metrics import mean_squared_error
all_dates = AutoReg(df, lags=lags, old_names=False)
df_pred = all_dates.predict(model.params,
                            start=df_train.index[-1]).shift(1).iloc[1:]
Exemplo n.º 3
0
#___________________________

#ARIMA(1, 1, 1) SARIMAX(1, 0, 1, 52)
model = SARIMAX(series,
                order=(1, 1, 1),
                seasonal_order=(1, 1, 1, 52),
                trend='n',
                enforce_stationarity=False,
                enforce_invertibility=False).fit()

print("________________________")
print("MODEL SUMMARY")
print(model.summary().tables[1])

# Nice way to check residuals follow a Gaussian distribution
model.plot_diagnostics(figsize=(15, 12))
plt.show()

train_pred = model.predict()
train_pred_cpy = train_pred.copy()
print(train_pred_cpy)
print(type(train_pred_cpy))
print(type(series))

cdf_index = a_organic[0:train_size].index
#print(cdf_index)
#print(type(cdf_index))

#________________________________________________
#Comparing the FIT with the trained data
#________________________________________________
Exemplo n.º 4
0
    parameters = product(p, q, P, Q)
    parameters_list = list(parameters)
    print(len(parameters_list))

    ## Uncomment to find the optimization parameters:
    result_df = optimize_SARIMA(parameters_list, 1, 1, m, dft_f['cnt_smooth'])
    print('\nSarima Optimization\n', result_df)
    best_param = result_df['(p,q)x(P,Q)'][0]
    (p_best, q_best, P_best, Q_best) = best_param

    # best_model = SARIMAX(dft_f['cnt_smooth'], order=(1, 1, 1), seasonal_order=(0, 1, 1, m)).fit(dis=-1)

    best_model = SARIMAX(dft_f['cnt_smooth'], order=(p_best, 1, q_best), seasonal_order=(P_best, 1, Q_best, m)).fit(dis=-1)
    print(best_model.summary())

    best_model.plot_diagnostics(figsize=(12,8))
    plt.suptitle(f'Diagnostic Best model')
    plt.savefig(f'{baseSave}/diagnostic_plot_station_{s}.png', dpi=150)
    plt.clf()
    '''
    END: Compute Sarima optimization
    '''
    end_endto = args.forecast_upto.date() + timedelta(days=-1)
    dft_all = pd.read_csv(f'{baseSave}/smoothed_to_compare_s_{s}.csv', header=[0], index_col=[0], sep=';', parse_dates=True)
    dft_all_upto = dft_all.loc[selection[s]['stop']:end_endto.strftime('%Y-%m-%d')]

    dft_f_from = dft_f.loc[selection[s]['start']:]
    pred_uc = best_model.get_forecast(steps=pd.to_datetime(args.forecast_upto.date().strftime('%Y-%m-%d')))
    pred_ci = pred_uc.conf_int()
    ax = dft_f_from['cnt_smooth'].plot(label='Observed Smoothed Data', c='r', figsize=(12, 8))
    dft_all_upto['cnt_smooth'].plot(label='Observed "Forecasted" Data', c='b', figsize=(12, 8))
Exemplo n.º 5
0
            try:
                mod = sm.tsa.statespace.SARIMAX(y,
                                                order=param,
                                                seasonal_order=param_seasonal,
                                                enforce_stationarity=False,
                                                enforce_invertibility=False)
                results = mod.fit()
                # st.write('ARIMA{}x{}12 - AIC:{}'.format(param, param_seasonal, results.aic))
            except:
                continue

    sarimax = SARIMAX(y, order=(0,1,1), seasonal_order=(0,1,1,12)).fit()
    st.write('Model Summary')
    sarimax.summary()

    st.pyplot(sarimax.plot_diagnostics(figsize=(20, 10)))
    
    residuals =pd.Series(sarimax.resid)
    def check_residuals(series):
        fig = plt.figure(figsize=(20, 10))    
        gs = fig.add_gridspec(2,2)
        ax1 = fig.add_subplot(gs[0, :])
        ax1.plot(series)
        ax1.set_title('residuals')
        
        ax2 = fig.add_subplot(gs[1,0])
        plot_acf(series, ax=ax2, title='ACF')
        
        ax3 = fig.add_subplot(gs[1,1])
        sns.kdeplot(series, ax=ax3)
        ax3.set_title('density')
Exemplo n.º 6
0
                                    enforce_invertability=False)
            results = sarima_model.fit()
            print("ARIMA{}x{} - AIC:{:.2f}".format(param, param_seasonal, results.aic))
        except:
            continue

# plug in results with lowest AIC score
sarima_model = SARIMAX(y, order=(1,1,1), seasonal_order=(0,1,1,12))
sarima_model = sarima_model.fit(disp=False)

# summary table of SARIMA
print("SARIMA summary table:")
print(sarima_model.summary().tables[1])

# show plot diagnostics
sarima_model.plot_diagnostics(figsize=(15,12))
plt.show()

# Show predictions using one-step forecast
pred = sarima_model.get_prediction(start=pd.to_datetime('1998-01-01'), dynamic=False)
pred_ci = pred.conf_int()

ax = y['1990':].plot(label='observed')
pred.predicted_mean.plot(ax=ax, label='One step ahead forecast', alpha=0.7)
ax.fill_between(pred_ci.index, 
                pred_ci.iloc[:, 0], 
                pred_ci.iloc[:, 1], color='k', alpha=0.2)
ax.set_xlabel('Date')
ax.set_ylabel('CO2 Levels')
plt.legend()
plt.show()
Exemplo n.º 7
0
def projectexample_modelling(series, model_name, parameters):
    """ Function that performs the following plots
        shape of the series
        the first items

            :params series: univariate time series
            :type series: dataframe
            :return:
                - error (int): variable with error code
        """

    # modelling
    error = 0
    try:
        print("{} time series modelling".format('-' * 20))
        print("{} {} model".format('-' * 20, model_name))

        if model_name=='SARIMAX':

            p = parameters[0]
            d = parameters[1]
            q = parameters[2]
            P = parameters[3]
            D = parameters[4]
            Q = parameters[5]
            S = parameters[6]
            t = parameters[7]

            print("{} fitting model".format('-' * 20))
            # fit the model
            model = SARIMAX(series.values,
                             trend = t,
                             order = (p, d, q),
                             seasonal_order = (P, D, Q, S),
                             enforce_stationarity = False,
                             enforce_invertibility = False).fit()


            # Model summary
            print("{} Model summary".format('-' * 20))
            print(model.summary().tables[1])


            # Model diagnostic
            print("{} Model diagnostic".format('-' * 20))
            fig = model.plot_diagnostics(figsize=(20, 12))
            fig.savefig(os.path.join(os.getcwd(), 'figures\\diagnostic_{}.png'.format(model_name)))
            fig.show()

    except Exception as exception_msg:
        print('{} (!) Error in projectexample_modelling: '.format('-' * 20) + str(exception_msg))
        error = 1
        model = []
        return model, error

    # Metrics
    print("{} Metrics".format('-' * 20))
    try:
        # Regression metrics
        y_fitted = model.predict()
        R2 = round(r2_score(series, y_fitted), 3)
        MAE = round(mean_absolute_error(series, y_fitted), 3)
        RMSE = round(np.sqrt(mean_squared_error(series, y_fitted)), 3)

        print("{} R2: {}".format('-' * 20, R2))
        print("{} MAE: {}".format('-' * 20, MAE))
        print("{} RMSE: {}".format('-' * 20, RMSE))

    except Exception as exception_msg:
        print('{} (!) Error in projectexample_modelling (metrics): '.format('-' * 20) + str(exception_msg))
        error = 2
        return model, error




    return model, error
Exemplo n.º 8
0
def mod_sarima(train,
               test,
               dependent_var_col,
               trend,
               p,
               d,
               q,
               P,
               D,
               Q,
               S,
               is_log,
               outpath,
               name,
               xreg,
               plot_regressors,
               mle_regression=True,
               time_varying_regression=False,
               periodicity='daily'):
    """
This function trains and tests the SARIMA model. for this two dataframes must be given, train and test.
trend, pdq and PDQS, are the statsmodels.SARIMAX variables.
    :param train (Pandas Dataframe): train data
    :param test (Pandas Dataframe): test data
    :param ts_col (int): column of the objective variable
    :param trend (str): Parameter controlling the deterministic trend polynomial A(t)
    :param p (int): Autorregresive parameter
    :param d (int): Differencing parameter
    :param q (int): Differencing Moving Average parameter
    :param P (int): Seasonal Autorregresive parameter
    :param D (int): Seasonal Differencing parameter
    :param Q (int): Seasonal Differencing Moving Average parameter
    :param S (int): Lags for the seasonal
    :param is_log (bool): true if the series is in logarithm. defaults to False.
    :param outpath (str): path where the results will be stored
    :param name (str): name to use when saving the files returned by the model
    :xreg(list): list of strings with names of columns in the test/train datasets to be used as regressors
    :plot_regressors: whether the regressors should be plotted in the function
    :return: mae_error (float): Mean Absolute Error
    rmse_error (float): root mean squared error
     res_df (Pandas Dataframe): Dataframe with all data and the prediction in the Forecast column.
      mod (statsmodel object): Model object.
    """
    print(
        'Modelling \n', name,
        ' Forecast - SARIMAX ' + '(' + str(p) + ',' + str(d) + ',' + str(q) +
        ')' + 'S' + '(' + str(P) + ',' + str(D) + ',' + str(Q) + ')' + str(S))

    # path definition
    if name not in os.listdir(outpath):
        os.mkdir(outpath + name)
        print('creating output folder in: \n', outpath + name)
    report_output_path = str(outpath) + str(name) + '/'

    # fit the model
    if len(xreg) == 0:
        mod = SARIMAX(train[dependent_var_col],
                      trend=trend,
                      order=(p, d, q),
                      seasonal_order=(P, D, Q, S),
                      time_varying_regression=time_varying_regression,
                      mle_regression=mle_regression).fit()
    else:
        mod = SARIMAX(train[dependent_var_col],
                      trend=trend,
                      order=(p, d, q),
                      seasonal_order=(P, D, Q, S),
                      exog=train[xreg],
                      enforce_stationarity=False,
                      time_varying_regression=time_varying_regression,
                      mle_regression=mle_regression).fit()

    # plot diagnostics
    plt.figure()
    plt.title('Plot diagnostics for' + dependent_var_col +
              ' Forecast - SARIMA ' + '(' + str(p) + ',' + str(d) + ',' +
              str(q) + ')' + 'S' + '(' + str(P) + ',' + str(D) + ',' + str(Q) +
              ')' + str(S))
    mod.plot_diagnostics(figsize=(15, 9), lags=40)
    plt.savefig(report_output_path + 'diagnostics_' + name + '.png')

    # predict with the model
    # I know this seems like a lot, but to be able to support broken time series in the forecast you need to reset the indexes

    test_aux = test.copy(deep=True)

    # TODO: remove this parameter
    test_aux[xreg] = np.exp(test_aux[xreg])
    test_aux[xreg] = test_aux[xreg] * 0.9
    test_aux[xreg] = np.log(test_aux[xreg])

    test_aux.reset_index(drop=True, inplace=True)
    train_aux = train.copy(deep=True)
    train_aux.reset_index(drop=True, inplace=True)

    # get the predictions with the model
    if len(xreg) == 0:
        predictions = mod.predict(train_aux.index.max() + 1,
                                  end=train_aux.index.max() + 1 +
                                  test_aux.index.max())
        conf_intervals = mod.get_prediction(
            train_aux.index.max() + 1,
            end=train_aux.index.max() + 1 +
            test_aux.index.max()).conf_int(alpha=0.5)
    else:
        predictions = mod.predict(train_aux.index.max() + 1,
                                  end=train_aux.index.max() + 1 +
                                  test_aux.index.max(),
                                  exog=test_aux[xreg])
        conf_intervals = mod.get_prediction(
            train_aux.index.max() + 1,
            end=train_aux.index.max() + 1 + test_aux.index.max(),
            exog=test_aux[xreg]).conf_int(alpha=0.5)

    predictions.index = test.index
    conf_intervals.index = test.index

    # the confidence interval is trimmed for extreme values so they don't overextort after missing dates and doing the inverse log transf (exp)
    conf_intervals = pd.DataFrame(conf_intervals)
    # conf_intervals[(conf_intervals['lower log_revenue_emi'] < conf_intervals['lower log_revenue_emi'].quantile(q=0.01)) | (
    #         conf_intervals['upper log_revenue_emi'] > conf_intervals['upper log_revenue_emi'].quantile(q=0.99))] = np.nan

    conf_intervals.index = conf_intervals.index.date
    conf_intervals.index = conf_intervals.index.map(str)

    # assign the predictions to the test dataframe to be used later in the plotting
    test['Forecast'] = predictions
    train['Forecast'] = mod.fittedvalues

    # add the columns that are in the regressors to the dataframe that will be used and get a dataframe to plot (train aux)
    columns = [dependent_var_col, 'Forecast']
    columns.append(xreg)
    columns = list(flatten(columns))
    train_aux = train[columns]
    test_aux = test[columns]
    test_aux = pd.merge(test_aux,
                        conf_intervals,
                        left_index=True,
                        right_index=True)

    # transform the data back from logarithm if the series is in that scale
    if is_log is True:
        res_df = pd.concat([train_aux, test_aux])
        res_df['Forecast'] = np.exp(res_df['Forecast'])
        res_df[dependent_var_col] = np.exp(res_df[dependent_var_col])

        mae_error = mean_absolute_error(np.exp(test[dependent_var_col]),
                                        np.exp(predictions))
        rmse_error = np.sqrt(
            mean_squared_error(np.exp(test[dependent_var_col]),
                               np.exp(predictions)))
        mape = mean_absolute_percentage_error(np.exp(test[dependent_var_col]),
                                              np.exp(predictions))

        preds = np.exp(predictions)

    else:
        res_df = pd.concat([train_aux, test_aux])
        mae_error = mean_absolute_error(test[dependent_var_col], predictions)
        rmse_error = np.sqrt(
            mean_squared_error(test[dependent_var_col], predictions))
        mape = mean_absolute_percentage_error(test[dependent_var_col],
                                              predictions)
        preds = predictions

    # Create a text box for the iteration results
    textstr = 'MAE:' + str(round(mae_error, 0)) + '\n' + 'MAPE:' + str(
        round(mape, 2))

    aux_res_df = res_df.tail(365)  # only plot the 6 months
    aux_res_df.index = pd.to_datetime(aux_res_df.index)
    if str(periodicity).upper() is 'daily':
        aux_res_df = aux_res_df.reindex(pd.date_range(aux_res_df.index.min(),
                                                      aux_res_df.index.max()),
                                        fill_value=np.nan)

    # Upper and lower confidence intervals
    lower = aux_res_df[str('lower ' + str(dependent_var_col))]
    upper = aux_res_df[str('upper ' + str(dependent_var_col))]
    if is_log is True:
        lower = np.exp(lower)
        upper = np.exp(upper)

    # plot the figure with the prediction
    fig, ax = plt.subplots(figsize=(15, 10))
    plt.subplots_adjust(right=0.85, left=0.05, bottom=0.1)
    ax2 = ax.twinx()
    ax.plot(aux_res_df["Forecast"], color='darkred', label='Forecast')
    ax.plot(aux_res_df[dependent_var_col], color='darkblue', label='Real')
    if plot_regressors is True:
        for i in xreg:
            ax2.plot(aux_res_df[i], color='grey', alpha=0.4, label=str(i))
    ax.plot(lower, color='darkgreen', label='Lower', alpha=0.5)
    ax.plot(upper, color='darkgreen', label='Upper', alpha=0.5)
    ax.fill_between(upper.dropna().index,
                    upper.dropna(),
                    lower.dropna(),
                    facecolor='darkgreen',
                    alpha=0.2,
                    interpolate=False)
    ax.axvline(x=pd.to_datetime(test.index.min(), format='%Y-%m-%d'),
               color='grey',
               linestyle='--')
    ax.xaxis.set_major_locator(mticker.MultipleLocator(30))
    plt.gcf().autofmt_xdate()
    # generate a text box
    props = dict(boxstyle='round', facecolor='white')
    # place a text box in upper left in axes coords
    ax.text(0.05,
            0.95,
            textstr,
            transform=ax.transAxes,
            fontsize=14,
            verticalalignment='top',
            bbox=props)

    ax.legend(title='Forecast Legend',
              bbox_to_anchor=(1.05, 1),
              loc='upper left')
    ax2.legend(title='Regressors',
               bbox_to_anchor=(1.05, 0.7),
               loc='center left')
    plt.savefig(report_output_path + 'Forecast_' + name + '_' + str(
        datetime.strftime(pd.to_datetime(test.index.min()), format='%Y-%m-%d'))
                + '.png')
    plt.title('SARIMAX Forecast of ' + name)
    plt.show()

    plt.close('all')

    # plotting the results in plotly
    fig = go.Figure()
    fig.add_trace(
        go.Scatter(x=res_df.index,
                   y=res_df[dependent_var_col],
                   mode='lines',
                   name='Real'))
    fig.add_trace(
        go.Scatter(x=res_df.index,
                   y=res_df['Forecast'],
                   mode='lines+markers',
                   name='Fitted - Forecasted'))

    fig.add_shape(
        dict(type="line",
             x0=test.index.min(),
             y0=res_df[dependent_var_col].min(),
             x1=test.index.min(),
             y1=res_df[dependent_var_col].max(),
             line=dict(color="grey", width=1)))
    fig.update_xaxes(rangeslider_visible=True)
    fig.update_layout(title=dependent_var_col + ' Forecast - SARIMA ' + '(' +
                      str(p) + ',' + str(d) + ',' + str(q) + ')' + 'S' + '(' +
                      str(P) + ',' + str(D) + ',' + str(Q) + ')' + str(S),
                      xaxis_title=dependent_var_col,
                      yaxis_title='Date',
                      font=dict(family="Century gothic",
                                size=18,
                                color="darkgrey"))
    fig.write_html(report_output_path + name + '_forecast_SARIMA.html')
    plt.close('all')

    print('MAE', mae_error)
    print('RMSE', rmse_error)
    print('MAPE', mape)
    print(mod.summary())

    return mae_error, rmse_error, mape, name, preds, conf_intervals