Exemplo n.º 1
0
        path_list = update_list(path_list, result[1], i)
      n = len(path_list)
    return path_list


def update_robot_pos(data):
  data2 = data.pose[17]
  orientation_list = [data2.orientation.x, data2.orientation.y, data2.orientation.z, data2.orientation.w]
  (roll, pitch, yaw) = euler_from_quaternion (orientation_list)

  global car
  car = [data2.position.x, data2.position.y, yaw + pi]


#dummy
motor_cmd = Float64MultiArray()
suspension_cmd = Float64()
car = [0, 0, 0]

#fixed parameters
obstacle_list = [[4,1.5], [5.5,0.7], [5.5,2.3], [7,1.5]]

#parameters to adjust
spd = 7
[p_gain, i_gain, d_gain] = [7, 0, 0]
motor_cmd_topic_name = '/toy_car2/joint_vel_controller/command'
suspension_topic_front_left = '/toy_car2/front_left_suspension_controller/command'
suspension_topic_front_right = '/toy_car2/front_right_suspension_controller/command'
suspension_topic_rear_left = '/toy_car2/rear_left_suspension_controller/command'
suspension_topic_rear_right = '/toy_car2/rear_right_suspension_controller/command'
		rospy.sleep(2)




if __name__=="__main__":

	# Setting-up processes

	moveit_commander.roscpp_initialize(sys.argv)
	rospy.init_node('panda_demo', anonymous=True)
	robot = moveit_commander.RobotCommander()
	scene = moveit_commander.PlanningSceneInterface()
	group = moveit_commander.MoveGroupCommander("panda_arm")
	gripper_publisher = rospy.Publisher('/franka/gripper_position_controller/command', Float64MultiArray, queue_size=1)
	gripper_msg = Float64MultiArray()
	gripper_msg.layout.dim = [MultiArrayDimension('', 2, 1)]

	display_trajectory_publisher = rospy.Publisher('/move_group/display_planned_path',moveit_msgs.msg.DisplayTrajectory,queue_size=20)

	rospy.sleep(2)


	
	p = geometry_msgs.msg.PoseStamped()
	p.header.frame_id = robot.get_planning_frame()
	p.pose.position.x = 0.153745
	p.pose.position.y = -0.301298
	p.pose.position.z = 0.
	p.pose.orientation.x =  0.6335811
	p.pose.orientation.y = 0
Exemplo n.º 3
0
    def run(self):
        '''
        Runs ROS node - computes PID algorithms for cascade attitude control.
        '''

        while (rospy.get_time() == 0) and (not rospy.is_shutdown()):
            print 'Waiting for clock server to start'

        print 'Received first clock message'

        while (not self.start_flag) and (not rospy.is_shutdown()):
            print "Waiting for the first measurement."
            rospy.sleep(0.5)
        print "Starting attitude control."

        self.t_old = rospy.Time.now()
        clock_old = self.clock
        #self.t_old = datetime.now()
        self.count = 0
        self.loop_count = 0

        while not rospy.is_shutdown():
            #self.ros_rate.sleep()
            while (not self.start_flag) and (not rospy.is_shutdown()):
                print "Waiting for the first measurement."
                rospy.sleep(0.5)
            rospy.sleep(1.0/float(self.rate))

            self.euler_sp_filt.x = simple_filters.filterPT1(self.euler_sp_old.x, 
                self.euler_sp.x, self.roll_reference_prefilter_T, self.Ts, 
                self.roll_reference_prefilter_K)
            self.euler_sp_filt.y = simple_filters.filterPT1(self.euler_sp_old.y, 
                self.euler_sp.y, self.pitch_reference_prefilter_T, self.Ts, 
                self.pitch_reference_prefilter_K)
            self.euler_sp_filt.z = self.euler_sp.z
            #self.euler_sp.z = simple_filters.filterPT1(self.euler_sp_old.z, self.euler_sp.z, 0.2, self.Ts, 1.0)

            self.euler_sp_old = copy.deepcopy(self.euler_sp_filt)

            clock_now = self.clock
            dt_clk = (clock_now.clock - clock_old.clock).to_sec()

            clock_old = clock_now
            if dt_clk > (1.0 / self.rate + 0.005):
                self.count += 1
                print self.count, ' - ',  dt_clk

            if dt_clk < (1.0 / self.rate - 0.005):
                self.count += 1
                print self.count, ' - ',  dt_clk

            if dt_clk < 0.005:
                dt_clk = 0.01

            # Roll
            roll_rate_sv = self.pid_roll.compute(self.euler_sp_filt.x, self.euler_mv.x, dt_clk)
            # roll rate pid compute
            roll_rate_output = self.pid_roll_rate.compute(roll_rate_sv, self.euler_rate_mv.x, dt_clk) + self.roll_rate_output_trim

            # Pitch
            pitch_rate_sv = self.pid_pitch.compute(self.euler_sp_filt.y, self.euler_mv.y, dt_clk)
            # pitch rate pid compute
            pitch_rate_output = self.pid_pitch_rate.compute(pitch_rate_sv, self.euler_rate_mv.y, dt_clk) + self.pitch_rate_output_trim

            # Yaw
            yaw_rate_sv = self.pid_yaw.compute(self.euler_sp_filt.z, self.euler_mv.z, dt_clk)
            # yaw rate pid compute
            yaw_rate_output = self.pid_yaw_rate.compute(yaw_rate_sv, self.euler_rate_mv.z, dt_clk)

            # VPC stuff
            vpc_roll_output = -self.pid_vpc_roll.compute(0.0, roll_rate_output, dt_clk)
            # Due to some wiring errors we set output to +, should be -
            vpc_pitch_output = -self.pid_vpc_pitch.compute(0.0, pitch_rate_output, dt_clk)


            # Publish mass position
            #mass0_command_msg = Float64()
            #mass0_command_msg.data = dx_pitch
            #mass2_command_msg = Float64()
            #mass2_command_msg.data = -dx_pitch
            #mass1_command_msg = Float64()
            #mass1_command_msg.data = -dy_roll
            #mass3_command_msg = Float64()
            #mass3_command_msg.data = dy_roll
            #self.pub_mass0.publish(mass0_command_msg)
            #self.pub_mass1.publish(mass1_command_msg)
            #self.pub_mass2.publish(mass2_command_msg)
            #self.pub_mass3.publish(mass3_command_msg)

            # Publish attitude
            attitude_output = Float64MultiArray()
            attitude_output.data = [roll_rate_output, pitch_rate_output, \
                yaw_rate_output, vpc_roll_output, vpc_pitch_output]
            self.attitude_pub.publish(attitude_output)

            # Publish PID data - could be usefule for tuning
            self.pub_pid_roll.publish(self.pid_roll.create_msg())
            self.pub_pid_roll_rate.publish(self.pid_roll_rate.create_msg())
            self.pub_pid_pitch.publish(self.pid_pitch.create_msg())
            self.pub_pid_pitch_rate.publish(self.pid_pitch_rate.create_msg())
            self.pub_pid_yaw.publish(self.pid_yaw.create_msg())
            self.pub_pid_yaw_rate.publish(self.pid_yaw_rate.create_msg())
            # Publish VPC pid data
            self.pub_pid_vpc_roll.publish(self.pid_vpc_roll.create_msg())
            self.pub_pid_vpc_pitch.publish(self.pid_vpc_pitch.create_msg())
Exemplo n.º 4
0
   
            #Fill Data Log msg
            visionData = PPCVisionData()
            visionData.eu = list(eu)
            visionData.ev = list(ev)
            visionData.u = list(u)
            visionData.v = list(v)
            visionData.Ucmds = list(Ucmds)
            visionData.rhol_u = list(-Ml_u*rhol_u)
            visionData.rhol_v = list(-Ml_v*rhol_v) 
            visionData.rhou_u = list(Mu_u*rhou_u)
            visionData.rhou_v = list(Mu_v*rhou_v)

          
            #Fill CMD Msg             
            cmd = Float64MultiArray()
            cmd.layout.dim = [MultiArrayDimension()]
            cmd.layout.dim[0].size = 7
            cmd.layout.dim[0].stride = 7
            cmd.layout.data_offset = 0
            cmd.data = list (float (qvelt) for qvelt in qv) 
            
            #print cmd.data
            pub_vel.publish (cmd)
            pub_data.publish (visionData)
      
            rate_it.sleep()
        rospy.spin()

    except rospy.ROSInterruptException: pass
twist = Twist()
cmd_vel_pub = rospy.Publisher('/cmd_vel', Twist, queue_size=10)

location_check_topic = '/location_check'
location_check_pub = rospy.Publisher(location_check_topic,
                                     Float64MultiArray,
                                     queue_size=1)

boundary_size_topic = "/boundary_size"
boundary_size_pub = rospy.Publisher(boundary_size_topic,
                                    Float64MultiArray,
                                    queue_size=10)
front_boundary = 0.20
width_boundary = 0.19
side_margin = 0.5
boundary_size = Float64MultiArray()
boundary_dodge = Float64MultiArray()
boundary_rotation = Float64MultiArray()
boundary_size.data = [front_boundary, width_boundary]
boundary_dodge.data = [front_boundary, width_boundary + side_margin]
boundary_rotation.data = [0, width_boundary + 0.35]

side_flag = ''

robot_z = 0
scan_rectangle_R = []
scan_rectangle_F = []
scan_rectangle_L = []


def quaternion_to_euler_angle(msg):
Exemplo n.º 6
0
def callback(data):
    bridge = CvBridge()
    # road
    color_min = np.array([0, 15, 20], np.uint8)
    color_max = np.array([60, 240, 200], np.uint8)
    # color_min = np.array([25, 100, 100],np.uint8)
    # color_max = np.array([35, 255, 255],np.uint8)
    #  home
    obj_color_min = np.array([150, 150, 100], np.uint8)
    obj_color_max = np.array([180, 240, 200], np.uint8)
    bgr_cal = []

    # try:

    # pub_size = rospy.Publisher('/obj_size', Float64, queue_size=1)
    try:
        with open("/home/evan/catkin_ws/src/cozmo_run/src/wb.txt", "r") as f:
            bgr_cal = f.read().split()
        # print(type(bgr_cal[0]))
        for i in xrange(len(bgr_cal)):
            bgr_cal[i] = float(bgr_cal[i])
        # print(type(bgr_cal[0]))

    except:
        # bgr_cal=[1,1,1]
        print('wb_error')
        pass
    try:
        pub_head = rospy.Publisher('/head_angle', Float64, queue_size=1)
        head_angle = -5
        pub_head.publish(head_angle)
        frame_raw = bridge.imgmsg_to_cv2(data, "bgr8")
        frame_raw = cv2.flip(frame_raw, 1)
        height, width = frame_raw.shape[:2]
        frame_cpy = frame_raw.copy()
        b, g, r = cv2.split(frame_cpy)
        cv2.convertScaleAbs(b, b, bgr_cal[0])
        cv2.convertScaleAbs(g, g, bgr_cal[1])
        cv2.convertScaleAbs(r, r, bgr_cal[2])
        frame_cpy = cv2.merge((b, g, r))
        # Original
        # frame_lower = frame_cpy[200:239, 30:305]
        # test

        # Frame cropping setting
        frame_lower = frame_cpy[120:160, 15:305]
        # obj_frame = frame_cpy[140:160,30:290]
        frame_higher = frame_cpy[90:110, 30:290]
        # obj_frame = frame_cpy[100:120, 40:280]
        obj_frame = frame_cpy[110:120, 40:280]
        frame_cpy = cv2.flip(frame_cpy, 1)

        kernel1 = np.ones((5, 5), np.float32) / 25
        kernel2 = np.ones((3, 3), np.float32) / 9

        # whole picture frame setting
        frame_hsv = cv2.cvtColor(frame_cpy, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(frame_hsv, color_min, color_max)
        res = cv2.bitwise_and(frame_hsv, frame_hsv, mask=mask)
        res = cv2.erode(res, kernel1, iterations=1)
        res = cv2.dilate(res, kernel1, iterations=1)
        gray = cv2.cvtColor(res, cv2.COLOR_HSV2BGR)
        gray = cv2.cvtColor(gray, cv2.COLOR_BGR2GRAY)
        canny = cv2.Canny(gray, 100, 200)
        _, contours, _ = cv2.findContours(gray, cv2.RETR_TREE,
                                          cv2.CHAIN_APPROX_SIMPLE)

        #  closer distance frame setting
        frame_hsv_lower = cv2.cvtColor(frame_lower, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(frame_hsv_lower, color_min, color_max)
        res_lower = cv2.bitwise_and(frame_hsv_lower,
                                    frame_hsv_lower,
                                    mask=mask)
        # res_lower = cv2.erode(res_lower, kernel1, iterations=1)
        res_lower = cv2.dilate(res_lower, kernel1, iterations=1)
        gray_lower = cv2.cvtColor(res_lower, cv2.COLOR_HSV2BGR)
        gray_lower = cv2.cvtColor(gray_lower, cv2.COLOR_BGR2GRAY)
        canny_lower = cv2.Canny(gray_lower, 100, 200)
        _, contours_lower, _ = cv2.findContours(gray_lower, cv2.RETR_TREE,
                                                cv2.CHAIN_APPROX_SIMPLE)

        #  obj area frame setting
        obj_frame_hsv = cv2.cvtColor(obj_frame, cv2.COLOR_BGR2HSV)
        obj_mask = cv2.inRange(obj_frame_hsv, obj_color_min, obj_color_max)
        obj_res = cv2.bitwise_and(obj_frame_hsv, obj_frame_hsv, mask=obj_mask)
        obj_res = cv2.erode(obj_res, kernel2, iterations=1)
        obj_res = cv2.dilate(obj_res, kernel2, iterations=1)
        obj_gray = cv2.cvtColor(obj_res, cv2.COLOR_HSV2BGR)
        obj_gray = cv2.cvtColor(obj_gray, cv2.COLOR_BGR2GRAY)
        _, obj_contours, _ = cv2.findContours(obj_gray, cv2.RETR_TREE,
                                              cv2.CHAIN_APPROX_SIMPLE)

        # canny = cv2.Canny(gray, 100, 200)

        #  longer distance frame setting
        frame_hsv_h = cv2.cvtColor(frame_higher, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(frame_hsv_h, color_min, color_max)
        res_h = cv2.bitwise_and(frame_hsv_h, frame_hsv_h, mask=mask)
        res_h = cv2.erode(res_h, kernel2, iterations=1)
        res_h = cv2.dilate(res_h, kernel2, iterations=1)
        gray_h = cv2.cvtColor(res_h, cv2.COLOR_HSV2BGR)
        gray_h = cv2.cvtColor(gray_h, cv2.COLOR_BGR2GRAY)
        _, contours_h, _ = cv2.findContours(gray_h, cv2.RETR_TREE,
                                            cv2.CHAIN_APPROX_SIMPLE)

        #  lower area publish
        a = Float64MultiArray()
        if len(contours_lower) != 0:
            c = max(contours_lower, key=cv2.contourArea)
            # cnt = c
            # print(cnt)
            area = cv2.contourArea(c)
            M = cv2.moments(c)
            if area != 0:
                cx = int(M['m10'] / M['m00'])
                cy = int(M['m01'] / M['m00'])
            else:
                cx = default_x
                cy = default_y
            if area > min_track_size:

                # a.data = [area,cx, cy]
                a.data.append(0)
                a.data.append(area)
                a.data.append(cx)
                a.data.append(cy)
                # print(a.data, area, cx, cy)
                # # pub_size.publish(a)
                # print ("Obj found in lower area\n")
                # cv2.drawContours(frame_cpy, contours_lower, -1, (0,255,0), 3)
                if abs(cx - default_x) > 20:
                    cv2.arrowedLine(frame_cpy, (default_x, 80),
                                    (width - cx, 80), (255, 0, 100),
                                    thickness=8)
            else:
                # a = Float64MultiArray()
                # a.data = [0, 0.0,default_x,default_y]
                a.data.append(0)
                a.data.append(0.0)
                a.data.append(default_x)
                a.data.append(default_y)
                # pub_size.publish(b)
                # print ("Noise only at lower area\n")
                # print(area, cx, cy)

        else:
            print("error")
            # a = Float64MultiArray()
            # a.data = [0, 0.0,default_x,default_y]
            a.data.append(0)
            a.data.append(0.0)
            a.data.append(0.0)
            a.data.append(0.0)
            # print ("No target found at lower\n")
            # # print(area)

        # higher area publish
        if len(contours_h) != 0:
            c = max(contours_h, key=cv2.contourArea)
            # cnt = c
            # print(cnt)
            area = cv2.contourArea(c)
            M = cv2.moments(c)
            if area != 0:
                cx = int(M['m10'] / M['m00'])
                cy = int(M['m01'] / M['m00'])
            else:
                cx = default_x
                cy = default_y
            if area > min_track_size:
                a.data.append(1)
                a.data.append(area)
                a.data.append(cx)
                a.data.append(cy)
                # print(a.data, area, cx, cy)
                # print(area, cx, cy)
                # pub_size.publish(a)
                # print ("Obj found in higher area\n")
            else:
                a.data.append(1)
                a.data.append(0.0)
                a.data.append(0.0)
                a.data.append(0.0)
                # print ("Noise only at higher area\n")
                # print(area, cx, cy)
        else:
            print("error")
            # a = Float64MultiArray()
            # a.data = [1, 0.0,default_x,default_y]
            a.data.append(1)
            a.data.append(0.0)
            a.data.append(0.0)
            a.data.append(0.0)
            # print ("No target found at higher\n")

        # Obj area publish
        if len(obj_contours) != 0:
            c = max(obj_contours, key=cv2.contourArea)
            # cnt = c
            # print(cnt)
            area = cv2.contourArea(c)
            M = cv2.moments(c)
            if area != 0:
                cx = int(M['m10'] / M['m00'])
                cy = int(M['m01'] / M['m00'])
            else:
                cx = default_x
                cy = default_y
            if area > min_track_size:
                # a = Float64MultiArray()
                # a.data = [area,cx, cy]
                a.data.append(2)
                a.data.append(area)
                a.data.append(cx)
                a.data.append(cy)
                # print(area, cx, cy)
                # pub_size.publish(a)
                print("Obj found in obj area\n")
            else:
                # a = Float64MultiArray()
                # a.data = [2, 0.0,default_x,default_y]
                a.data.append(2)
                a.data.append(0.0)
                a.data.append(default_x)
                a.data.append(default_y)
                # pub_size.publish(b)
                print("Noise only at obj area\n")
                # print(area, cx, cy)

        else:
            print("error")
            # a = Float64MultiArray()
            # a.data = [0, 0.0,default_x,default_y]
            a.data.append(0)
            a.data.append(0.0)
            a.data.append(0.0)
            a.data.append(0.0)
            print("No target found at obj\n")
            # print(area)

        print(a)
        pub_size.publish(a)
        # cv2.imshow('raw', frame_raw)
        # cv2.imshow('res', res)

        cv2.imshow('gray', gray_lower)
        # cv2.imshow('gray_h', gray_h)
        # cv2.imshow('canny', canny)
        cv2.imshow('obj_gray', obj_gray)
        # cv2.imshow("obj_res",obj_frame_hsv)
        # cv2.imshow("original", frame_raw)

        cv2.namedWindow('wb', cv2.WINDOW_NORMAL)
        cv2.resizeWindow('wb', 1280, 960)
        cv2.imshow("wb", frame_cpy)
        cv2.waitKey(1)
        # print(a)
    except CvBridgeError as e:
        print(e)
Exemplo n.º 7
0
    def tick(self):
        """Called every so often to update our state."""

        if self.state == ForceFeedbackState.NORMAL:
            # send desired position to IK directly
            # Actually publish if we have some publishers
            rospy.logerr('Im in NORMAL state')
            if self.pubs is not None:
                p0 = self.desired_pos
                # Record the current sent pos as element 0 of self.prev_pos
                # shuffling the other pos to the right. Then, truncate the
                # list to be a maximum of 2 pos long.
                self.prev_pos = [p0] + self.prev_pos
                self.prev_pos = self.prev_pos[:2]

                #Publish the desired position to /pos_for_IK
                p0_list = p0.tolist()
                msg = Float64MultiArray()
                msg.data = deepcopy(p0_list)
                self.pubs.publish(msg)

        elif self.state == ForceFeedbackState.FORCEFB:
            rospy.logerr('Im in FORCEFB state')
            # Calculate correction vector

            # Need to check whether desired_pos is nan. Can use one only because the function only allows scalar
            if math.isnan(self.desired_pos[0]) == False:
                self.stored_desired_pos = self.desired_pos

            correction = self.stored_desired_pos - self.camera_pos
            correction_mag = np.sqrt(np.sum(correction * correction))

            #separate out two terms for testing and simplicity (and also because error in camera measurements in 2 dimensions)
            correction_x_mag = np.sqrt(correction[0] * correction[0])
            correction_z_mag = np.sqrt(correction[2] * correction[2])
            rospy.logerr('correction_z_mag = ')
            rospy.logerr(correction_z_mag)

            #if the correction_vector bigger and smaller than some threshold, then do something
            #if math.isnan(correction_mag)==True or correction_mag <= epsilon or correction_mag >= 0.05:
            #need correction_z_mag in case we are using force feedback on the wrong pose
            if math.isnan(correction_x_mag) == False and math.isnan(
                    correction_z_mag) == False and correction_z_mag <= 0.15:
                if correction_x_mag >= 0.04 or correction_z_mag >= 0.03:
                    rospy.logerr('FORCE FEEDBACK with correction mag: ' +
                                 str(correction_mag))

                    # Calculate new commanded pose
                    p0 = self.stored_desired_pos
                    p0_new = p0 + 1.0 * correction  #the constant can be changed depending on needs

                    self.prev_pos = [p0_new] + self.prev_pos
                    self.prev_pos = self.prev_pos[:2]

                    #Publish the new p0 to /pos_for_IK
                    p0_list = p0_new.tolist()
                    msg = Float64MultiArray()
                    msg.data = deepcopy(p0_list)

                    rospy.logerr('Publishing msg: ' + str(msg))
                    self.pubs.publish(msg)

                else:
                    rospy.logerr('TRIED FORCE FB BUT NOT REQUIRED')
                    p0 = self.desired_pos
                    # Record the current sent pos as element 0 of self.prev_pos
                    # shuffling the other pos to the right. Then, truncate the
                    # list to be a maximum of 2 pos long.
                    self.prev_pos = [p0] + self.prev_pos
                    self.prev_pos = self.prev_pos[:2]

                    #Publish the desired position to /pos_for_IK
                    p0_list = p0.tolist()
                    msg = Float64MultiArray()
                    msg.data = deepcopy(p0_list)
                    self.pubs.publish(msg)
            else:
                rospy.logerr(
                    'MATH IS NAN or wrong pose, equivalent to NORMAL state')
                p0 = self.desired_pos
                # Record the current sent pos as element 0 of self.prev_pos
                # shuffling the other pos to the right. Then, truncate the
                # list to be a maximum of 2 pos long.
                self.prev_pos = [p0] + self.prev_pos
                self.prev_pos = self.prev_pos[:2]

                #Publish the desired position to /pos_for_IK
                p0_list = p0.tolist()
                msg = Float64MultiArray()
                msg.data = deepcopy(p0_list)
                self.pubs.publish(msg)

            self.desired_pos = np.ones(3) * np.nan
            self.state = ForceFeedbackState.NORMAL
    #Wait for 3 sec for arm to get to init pos
    time_start = rospy.get_time()
    goal_time = time_start + 3
    while(rospy.get_time() < goal_time):
        rate.sleep()
        
    #goalLoc = np.array([0.135, 0.28185, 0])
    goalLoc = np.array([0.3426, 0.08945, 0])
    #goalLoc = np.array([0.235, -0.01815, 0])
    #goalLoc = np.array([0.18945, 0.18945, 0])
    finalAngles = move_arm(goalLoc, jointpub, initialAngles)

    '''goalLoc = np.array([0.09, -0.16, 0])
    finalAngles = move_arm(goalLoc, jointpub, finalAngles)'''
    
    #Execute for 5 seconds to let the arm get to destination pos
    time_start = rospy.get_time()
    goal_time = time_start + 5
    while(rospy.get_time() < goal_time):
        rate.sleep()
        
    joint_pos = Float64MultiArray()
    res, pl = clean_joint_states(finalAngles)
    joint_pos.data = np.concatenate((np.array([0]), np.concatenate((res, np.array([0.34])))))
    jointpub.publish(joint_pos)
    
    #Allow for 3 seconds for the grapple to grab the lego, may need smoothing
    time_start = rospy.get_time()
    goal_time = time_start + 3
    while(rospy.get_time() < goal_time):
        rate.sleep()
def move_arm(goalPos, jointpub, initAngles):

    joint_pos = Float64MultiArray()
#   Joint Position vector should contain 6 elements:
#   [0, shoulder1, shoulder2, elbow, wrist, gripper]
#3rd -1.22 for ground
#0.34 for grip
    initialAngles = initAngles
    
    arm = RobotArm()
    #forward_kinematics = compute_forward_kinematics(joint_states)
    
    # Forward kinematics computation
    target = goalPos

    T = arm.forwardKinematics(initialAngles[0], initialAngles[1], initialAngles[2],
        initialAngles[3])
        
    # x,y coords for all the joints
    joint2pos, joint3pos, joint4pos, endEffectorPos = arm.findJointPos()
    newAngles = initialAngles
    endEffectorPosInit = endEffectorPos

    #Number of IK iterations
    numIT = 20
    
    for i in range(numIT):
        
        # obtain the Jacobian      
        J = computeGeomJacobian(joint2pos, joint3pos, joint4pos, endEffectorPos)

        print("Jointpos")
        print(joint2pos)
        print(joint3pos)
        print(joint4pos)
        print(endEffectorPos)
        # compute the dy steps
        newgoal = endEffectorPosInit + (i*(target - endEffectorPosInit))/numIT
        deltaStep = newgoal - endEffectorPos
        
        # define the dy
        subtarget = np.array([deltaStep[0], deltaStep[1], deltaStep[2]]) 
        
        # compute dq from dy and pseudo-Jacobian
        angleChange = np.dot(np.linalg.pinv(J), subtarget)
        print(angleChange[0])
        angleChange = np.array([angleChange[0], angleChange[1], angleChange[2],
            angleChange[3]])
        
        # update the q
        tempAngles, areValidAngles = clean_joint_states(newAngles + angleChange)
        tempAngles = np.array(tempAngles)
        if areValidAngles == True:
            prevAngles = newAngles
            newAngles = tempAngles
            # Do forward kinematics for a set angle on each joint
            T = arm.forwardKinematics(newAngles[0],newAngles[1],newAngles[2],newAngles[3])

            # Find the x,y coordinates of joints 2, 3 and end effector so they can be plotted
            joint2pos, joint3pos, joint4pos, endEffectorPos = arm.findJointPos()
        
            interpolate_angles(prevAngles, newAngles, 200, 200)
        else:
            print("Hitting rotational limits!")
            continue
    return newAngles
Exemplo n.º 10
0
    def callback2(self, data):
        # Recieve the image
        try:
            self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        #Blob detection starts here-------------------------------------------------------
        #Same to 2_1_joint_estimation.py
        def detect_red(self, image1, image2):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([0, 200, 0])
            higher_red1 = np.array([0, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([0, 200, 0])
            higher_red2 = np.array([0, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_blue(self, image1, image2):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([70, 0, 0])
            higher_red1 = np.array([255, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([70, 0, 0])
            higher_red2 = np.array([255, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_green(self, image1, image2):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([55, 0, 0])
            higher_red1 = np.array([100, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([55, 0, 0])
            higher_red2 = np.array([100, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_yellow(self, image1, image2):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([16, 244, 0])
            higher_red1 = np.array([51, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([16, 244, 0])
            higher_red2 = np.array([51, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_blue_contours(image1):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([70, 0, 0])
            higher_red1 = np.array([255, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            return np.array([contours1])

        def detect_yellow_contours(image1):
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([16, 244, 0])
            higher_red1 = np.array([51, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))

            return np.array([contours1])

        def get_y1_y2(yellow_contours, blue_contours):
            y1 = np.min(yellow_contours, axis=0)
            y1 = y1[0][1]
            y1 = y1[:, 1]

            y2 = np.max(blue_contours, axis=0)
            y2 = y2[0][1]
            y2 = y2[:, 1]

            return y1, y2

        def pixelTometer(self, image1, image2):

            yellow_contours = detect_yellow_contours(image2)
            blue_contours = detect_blue_contours(image2)
            y2 = detect_blue(self, image1, image2)
            y2 = y2[3]

            y1, y2 = get_y1_y2(yellow_contours, blue_contours)

            p2m = 2.5 / (y1 - y2)
            #65 is the best number

            return p2m

        #----------------------------------------------------------------------------------------------
        #Angle Detection starts here
        #This part is same as 2_1_joint_estimation.py
        def detect_angles_blob(self, image1, image2):
            try:
                p = pixelTometer(self, image1, image2)
                self.p2m = p
            except Exception as e:
                p = self.p2m

            try:
                green = detect_green(self, image1, image2)
                self.green = green
            except Exception as e:
                green = self.green

            try:
                red = detect_red(self, image1, image2)
                self.red = red
            except Exception as e:
                red = self.red

            p = pixelTometer(self, image1, image2)
            yellow = p * detect_yellow(self, image1, image2)
            blue = p * detect_blue(self, image1, image2)

            ja1 = 0.0
            ja2 = np.pi / 2 - np.arctan2((blue[2] - green[2]),
                                         (blue[1] - green[1]))
            ja3 = np.arctan2((blue[3] - green[3]),
                             (blue[0] - green[0])) - np.pi / 2
            ja4 = np.arctan2(
                (green[2] - red[2]), -(green[1] - red[1])) - np.pi / 2 - ja2

            return np.array([ja1, ja2, ja3, ja4])

        def angle_trajectory(self):
            curr_time = np.array([rospy.get_time() - self.time_trajectory])
            ja1 = 0.1
            ja2 = float((np.pi / 2) * np.sin((np.pi / 15) * curr_time))
            ja3 = float((np.pi / 2) * np.sin((np.pi / 18) * curr_time))
            ja4 = float((np.pi / 2) * np.sin((np.pi / 20) * curr_time))
            return np.array([ja1, ja2, ja3, ja4])

        def actual_target_position(self):
            curr_time = np.array([rospy.get_time() - self.time_trajectory])
            x_d = float((2.5 * np.cos(curr_time * np.pi / 15)) + 0.5)
            y_d = float(2.5 * np.sin(curr_time * np.pi / 15))
            z_d = float((1 * np.sin(curr_time * np.pi / 15)) + 7.0)
            return np.array([x_d, y_d, z_d])

        #FK starts here--------------------------------------------------------------------------------
        #This part is same as 3_1_FK.py

        def end_effector_position(self, image1, image2):
            try:
                p = pixelTometer(self, image1, image2)
                self.p2m = p
            except Exception as e:
                p = self.p2m
            yellow_posn = detect_yellow(self, image1, image2)
            red_posn = detect_red(self, image1, image2)
            yellow_posn[3] = 800 - yellow_posn[3]
            red_posn[3] = 800 - red_posn[3]

            cx, cy, cz1, cz2 = p * (red_posn - yellow_posn)
            ee_posn = np.array([cx, cy, cz2])
            ee_posn = np.round(ee_posn, 1)
            return ee_posn

        #Calculate the jacobian

        def calculate_jacobian(self, image1, image2):
            ja1, ja2, ja3, ja4 = detect_angles_blob(self, image1, image2)
            jacobian = np.array(
                [[
                    3 * np.cos(ja1) * np.sin(ja2) * np.cos(ja3) * np.cos(ja4) +
                    3.5 * np.cos(ja1) * np.sin(ja2) * np.cos(ja3) -
                    3 * np.sin(ja1) * np.cos(ja4) * np.sin(ja3) -
                    3.5 * np.sin(ja1) * np.sin(ja3) +
                    3 * np.cos(ja1) * np.cos(ja2) * np.sin(ja4),
                    3 * np.sin(ja1) * np.cos(ja2) * np.cos(ja3) * np.cos(ja4) +
                    3.5 * np.sin(ja1) * np.cos(ja2) * np.cos(ja3) -
                    3 * np.sin(ja1) * np.sin(ja2) * np.sin(ja4),
                    -3 * np.sin(ja1) * np.sin(ja2) * np.sin(ja3) * np.cos(ja4)
                    - 3.5 * np.sin(ja1) * np.sin(ja2) * np.sin(ja3) +
                    3 * np.cos(ja1) * np.cos(ja4) * np.cos(ja3) +
                    3.5 * np.cos(ja1) * np.cos(ja3),
                    -3 * np.sin(ja1) * np.sin(ja2) * np.cos(ja3) * np.sin(ja4)
                    - 3 * np.cos(ja1) * np.sin(ja4) * np.sin(ja3) +
                    3 * np.sin(ja1) * np.cos(ja2) * np.cos(ja4)
                ],
                 [
                     3 * np.sin(ja1) * np.sin(ja2) * np.cos(ja3) * np.cos(ja4)
                     + 3.5 * np.sin(ja1) * np.sin(ja2) * np.cos(ja3) +
                     3 * np.cos(ja1) * np.cos(ja4) * np.sin(ja3) +
                     3.5 * np.cos(ja1) * np.sin(ja3) +
                     3 * np.sin(ja1) * np.cos(ja2) * np.sin(ja4),
                     -3 * np.cos(ja1) * np.cos(ja2) * np.cos(ja3) * np.cos(ja4)
                     - 3.5 * np.cos(ja1) * np.cos(ja2) * np.cos(ja3) +
                     3 * np.cos(ja1) * np.sin(ja2) * np.sin(ja4),
                     +3 * np.cos(ja1) * np.sin(ja2) * np.sin(ja3) * np.cos(ja4)
                     + 3.5 * np.cos(ja1) * np.sin(ja2) * np.sin(ja3) +
                     3 * np.sin(ja1) * np.cos(ja4) * np.cos(ja3) +
                     3.5 * np.sin(ja1) * np.cos(ja3),
                     +3 * np.cos(ja1) * np.sin(ja2) * np.cos(ja3) * np.sin(ja4)
                     - 3 * np.sin(ja1) * np.sin(ja4) * np.sin(ja3) -
                     3 * np.cos(ja1) * np.cos(ja2) * np.cos(ja4)
                 ],
                 [
                     0, -3 * np.cos(ja3) * np.cos(ja4) * np.sin(ja2) -
                     3.5 * np.cos(ja3) * np.sin(ja2) -
                     3 * np.sin(ja4) * np.cos(ja2),
                     -3 * np.sin(ja3) * np.cos(ja4) * np.cos(ja2) -
                     3.5 * np.sin(ja3) * np.cos(ja2),
                     -3 * np.cos(ja3) * np.sin(ja4) * np.cos(ja2) -
                     3 * np.cos(ja4) * np.sin(ja2)
                 ]])
            return jacobian

        #Target Detection starts here---------------------------------------------------------------------
        #Same as 2_2_target_detection

        def initialize_detect_shape_var(template):
            startX = []
            startY = []
            endX = []
            endY = []
            w, h = template.shape[::-1]

            return startX, startY, endX, endY, w, h

        def get_resized_ratio(mask, scale):
            found = None
            resized = imutils.resize(mask, width=int(mask.shape[1] * scale))
            r = mask.shape[1] / float(resized.shape[1])
            return resized, r, found

        def get_maxVal_maxLoc(resized, template):
            res = cv2.matchTemplate(resized, template, cv2.TM_CCOEFF_NORMED)
            (_, maxVal, _, maxLoc) = cv2.minMaxLoc(res)
            return maxVal, maxLoc

        def append_X_Y(startX, startY, endX, endY, maxLoc, r, w, h):
            startX.append(int(maxLoc[0] * r))
            startY.append(int(maxLoc[1] * r))
            endX.append(int((maxLoc[0] + w) * r))
            endY.append(int((maxLoc[1] + h) * r))

            return startX, startY, endX, endY

        def detect_shape(self, mask, template):
            startX, startY, endX, endY, w, h = initialize_detect_shape_var(
                template)
            for scale in np.linspace(0.79, 1.0, 5)[::-1]:
                resized, r, found = get_resized_ratio(mask, scale)

                if resized.shape[0] < h or resized.shape[1] < w:
                    break

                maxVal, maxLoc = get_maxVal_maxLoc(resized, template)

                if found is None or maxVal > found[0]:
                    found = (maxVal, maxLoc, r)

                startX, startY, endX, endY = append_X_Y(
                    startX, startY, endX, endY, maxLoc, r, w, h)

            centerX = (statistics.mean(endX) + statistics.mean(startX)) / 2
            centerY = (statistics.mean(endY) + statistics.mean(startY)) / 2

            return centerX, centerY

        def apply_mask_target(image):
            hsv_convert = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
            mask = cv2.inRange(hsv_convert, (10, 202, 0), (27, 255, 255))
            kernel = np.ones((2, 2), np.uint8)
            mask = cv2.dilate(mask, kernel, iterations=1)
            return mask

        def get_target_location(self, centerX, centerY, centerZ):
            base_location = detect_yellow(self, self.image1, self.image2)
            base_location[2] = 800 - base_location[2]
            centerZ = 800 - centerZ
            target_location = (centerX - base_location[0],
                               centerY - base_location[1],
                               centerZ - base_location[2])
            target_location = np.asarray(target_location)
            return target_location

        def flying_object_location(self, image1, image2, template, threshold):
            mask1 = apply_mask_target(image1)
            mask2 = apply_mask_target(image2)

            centerY, centerZ1 = detect_shape(self, mask1, template)
            centerX, centerZ2 = detect_shape(self, mask2, template)

            try:
                p = pixelTometer(self, image1, image2)
                self.p2m = p
            except Exception as e:
                p = self.p2m

            image1 = cv2.circle(image1, (int(centerY), int(centerZ1)),
                                radius=2,
                                color=(255, 255, 255),
                                thickness=-1)
            image2 = cv2.circle(image2, (int(centerX), int(centerZ2)),
                                radius=2,
                                color=(255, 255, 255),
                                thickness=-1)

            target_location = get_target_location(self, centerX, centerY,
                                                  centerZ1)
            target_location_meters = target_location * p

            return target_location_meters

#Control Part starts here------------------------------------------------------------------------------------------

#Estimate control inputs for open-loop control

        def control_closed(self, image1, image2):
            # P gain
            K_p = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
            # D gain
            K_d = np.array([[0.1, 0, 0], [0, 0.1, 0], [0, 0, 0.1]])
            # estimate time step
            cur_time = np.array([rospy.get_time()])
            dt = cur_time - self.time_previous_step
            self.time_previous_step = cur_time
            # robot end-effector position
            pos = end_effector_position(self, image1, image2)
            # desired trajectory
            template = cv2.imread("cropped.png", 0)
            pos_d = flying_object_location(self, image1, image2, template, 0.8)
            # estimate derivative of error
            self.error_d = ((pos_d - pos) - self.error) / dt
            # estimate error
            self.error = pos_d - pos

            q = detect_angles_blob(self, image1,
                                   image2)  # estimate initial value of joints'

            J_inv = np.linalg.pinv(calculate_jacobian(
                self, image1,
                image2))  # calculating the psudeo inverse of Jacobian
            dq_d = np.dot(J_inv,
                          (np.dot(K_d, self.error_d.transpose()) +
                           np.dot(K_p, self.error.transpose())
                           ))  # control input (angular velocity of joints)
            q_d = q + (dt * dq_d)  # control input (angular position of joints)

            return q_d

        cv2.waitKey(1)
        #Publishing data starts here-----------------------------

        q_d = control_closed(self, self.image1, self.image2)

        x_a = actual_target_position(self)
        self.actual_target = Float64MultiArray()
        self.actual_target.data = x_a

        self.joints = Float64MultiArray()
        self.joints.data = detect_angles_blob(self, self.image1, self.image2)
        ja1, ja2, ja3, ja4 = angle_trajectory(self)
        self.joint1 = Float64()
        self.joint1.data = q_d[0]
        self.joint2 = Float64()
        self.joint2.data = q_d[1]
        self.joint3 = Float64()
        self.joint3.data = q_d[2]
        self.joint4 = Float64()
        self.joint4.data = q_d[3]

        vision_end_effector = end_effector_position(self, self.image1,
                                                    self.image2)
        self.vision_EF = Float64MultiArray()
        self.vision_EF.data = vision_end_effector

        # # Publishing the desired trajectory on a topic named trajectory(for lab 3)
        template = cv2.imread("cropped.png", 0)
        x_d = flying_object_location(self, self.image1, self.image2, template,
                                     0.8)
        self.vision_target = Float64MultiArray()
        self.vision_target.data = x_d

        try:
            self.image_pub1.publish(
                self.bridge.cv2_to_imgmsg(self.image1, "bgr8"))
            self.image_pub2.publish(
                self.bridge.cv2_to_imgmsg(self.image2, "bgr8"))
            self.vision_end_effector_pub.publish((self.vision_EF))
            self.vision_target_trajectory_pub.publish((self.vision_target))
            self.actual_target_trajectory_pub.publish((self.actual_target))
            self.joints_pub.publish(self.joints)
            self.robot_joint1_pub.publish(self.joint1)
            self.robot_joint2_pub.publish(self.joint2)
            self.robot_joint3_pub.publish(self.joint3)
            self.robot_joint4_pub.publish(self.joint4)

        except CvBridgeError as e:
            print(e)
def control_callback(event):
    
    # Actual control is done here. The 'event' is the rospy.Timer() duration period, can be used 
    # for trubleshooting. To test how often is executed use: $ rostopic hz /mallard/thruster_commands.
    
    global x0,y0,q0,x_goal,y_goal,q_goal,ed
    global time_elapsed,t_goal,t_goal_psi
    global t_ramp,psivel
    twist = Twist()


    #  Get forces in global frame using PD controller
    if(goals_received == True and joy_button_L1 == 0 and joy_button_R1 == 0):

        
        # new code - velocity ramp
        # get current time
        tn = rospy.Time.now()
        time_now = tn.secs + (tn.nsecs * 0.000000001)
        # time elapsed form the start of tracking the goal (equal to t_now in goal selector)
        time_elapsed = time_now - time_begin
        # get max velocities
        xvelmax = abs(kguseful.safe_div((x_goal-x0),t_goal))
        yvelmax = abs(kguseful.safe_div((y_goal-y0),t_goal))
        # get desired position,velocity and acceleration from velocity ramp
        x_des, x_vel_des, x_acc_des = kglocal.velramp(time_elapsed, xvelmax, x0, x_goal, t_ramp,name="x")
        y_des, y_vel_des, y_acc_des = kglocal.velramp(time_elapsed, yvelmax, y0, y_goal, t_ramp,name="y")
        # get desired angle:
        qdes = kglocal.despsi_fun(q_goal, t_goal_psi, q0, time_elapsed)
        psi_des = tft.euler_from_quaternion(qdes)[2] # Its a list: (roll,pitch,yaw)
        # psi_des = psides[2]
        psi_vel_des = kglocal.desvelpsi_fun(ed, t_goal_psi, time_elapsed,psivel)
        # end new code
        
        
        # PD control
        # x_global_ctrl   = control.proportional(x, x_goal, x_vel, x_vel_goal, param['kp'], param['kd'], param['lim'])
        # y_global_ctrl   = control.proportional(y, y_goal, y_vel, y_vel_goal, param['kp'], param['kd'], param['lim'])
        psi_global_ctrl = control.proportional_angle(psi, psi_des,psi_vel,psi_vel_des, param['kp_psi'], param['kd_psi'], param['lim_psi'])
        # PD body control
        # x_PD_body = math.cos(psi)*x_global_ctrl + math.sin(psi)*y_global_ctrl
        # y_PD_body =-math.sin(psi)*x_global_ctrl + math.cos(psi)*y_global_ctrl 

        
        # ----- Model control -----        
        ax = control.acc_ctrl(x, x_des, x_vel, x_vel_des,x_acc_des,param_model_x['kp'], param_model_x['kd'], param_model_x['lim'])
        ay = control.acc_ctrl(y, y_des, y_vel, y_vel_des,y_acc_des,param_model_y['kp'], param_model_y['kd'], param_model_y['lim'])
        # Model body control:
        # aqx = Rt * [ax,ay]t
        # vqx = Rt * [x_vel,y_vel]t
        aqx =  math.cos(psi)*ax + math.sin(psi)*ay
        aqy = -math.sin(psi)*ax + math.cos(psi)*ay
        vqx =  math.cos(psi)*x_vel + math.sin(psi)*y_vel
        vqy = -math.sin(psi)*x_vel + math.cos(psi)*y_vel
        # print("X-velocity: " + str(round(vqx,4)))
        x_body_model_ctrl = Mx*aqx + m22*vqy*psi_vel +R1_x*vqx + R2_x*(vqx*abs(vqx))
        # x_body_model_ctrl = Mx*aqx + R2_x*(vqx*abs(vqx))
        y_body_model_ctrl = My*aqy + R1_y*vqy + R2_y*(vqy*abs(vqy))
        # y_body_model_ctrl = My*aqy + R2_y*(vqy*abs(vqy))

        # twist.angular.y = data.buttons[4]
        # vector forces scaled in body frame
        twist.linear.x   = x_body_model_ctrl
        # twist.linear.x  = x_PD_body
        twist.linear.y  = y_body_model_ctrl
        # twist.linear.y  = y_PD_body
        twist.angular.z = -psi_global_ctrl

        # Test uniformity of the timer 
        now = rospy.Time.now()
        # twist.angular.x = now.secs
        # twist.angular.y = now.nsecs
        
        # Publish forces to simulation (joint_state_publisher message)
        pub_velocity.publish(twist)

        # send [time,position,velocity,goal_position,goal_velocity,control input]
        array_data = [now.secs,now.nsecs,\
                      x,y,psi,x_vel,y_vel,psi_vel,\
                      x_des,y_des,psi_des,x_vel_des,y_vel_des,psi_vel_des,\
                      x_body_model_ctrl,y_body_model_ctrl,psi_global_ctrl]
                      
        data_to_send = Float64MultiArray(data = array_data)
        pub_data.publish(data_to_send)

        # goals_received, xdes,ydes,psides[2],\
            #  xveldes,yveldes,psiveldes,ax,ay]

    elif(joy_button_L1 == 1 or joy_button_R1 == 1):
        twist.linear.x = joy_x
        twist.linear.y = joy_y
        twist.angular.z = joy_z
        pub_velocity.publish(twist)   
    else:
        # ----- idle if no goals -----
        pub_velocity.publish(Twist())
Exemplo n.º 12
0
    def __init__(self, mode="hs"):
        self.init = False
        self.name = "lpzros"
        self.mode = LPZRosEH.modes[mode]
        self.cnt = 0
        ############################################################
        # ros stuff
        rospy.init_node(self.name)
        # pub=rospy.Publisher("/motors", Float64MultiArray, queue_size=1)
        self.pub_motors   = rospy.Publisher("/motors", Float64MultiArray)
        self.pub_res_r    = rospy.Publisher("/reservoir/r", Float64MultiArray)
        self.pub_res_w    = rospy.Publisher("/reservoir/w", Float64MultiArray)
        self.pub_res_perf = rospy.Publisher("/reservoir/perf", Float64MultiArray)
        self.pub_res_perf_lp = rospy.Publisher("/reservoir/perf_lp", Float64MultiArray)
        self.pub_res_mdltr = rospy.Publisher("/reservoir/mdltr", Float64MultiArray)
        self.sub_sensor   = rospy.Subscriber("/sensors", Float64MultiArray, self.cb_sensors)
        # pub=rospy.Publisher("/chatter", Float64MultiArray)
        self.msg          = Float64MultiArray()
        self.msg_res_r    = Float64MultiArray()
        self.msg_res_w    = Float64MultiArray()
        self.msg_res_perf = Float64MultiArray()
        self.msg_res_perf_lp = Float64MultiArray()
        self.msg_res_mdltr = Float64MultiArray()

        # controller
        self.N = 200
        self.p = 0.1
        # self.g = 1.5
        # self.g = 1.2
        self.g = 0.999
        # self.g = 0.001
        # self.g = 0.
        self.alpha = 1.0

        self.wf_amp = 0.0
        # self.wf_amp = 0.005
        # self.wi_amp = 0.01
        # self.wi_amp = 0.1
        # self.wi_amp = 1.0 # barrel
        self.wi_amp = 5.0

        self.idim = 2
        self.odim = 2

        # simulation time / experiment duration
        # self.nsecs = 500 #1440*10
        # self.nsecs = 250
        # self.nsecs = 100
        self.nsecs = 50 #1440*10
        self.dt = 0.005
        self.dt = 0.01
        self.learn_every = 1
        self.test_rate = 0.95
        self.washout_rate = 0.05
        self.simtime = np.arange(0, self.nsecs, self.dt)
        self.simtime_len = len(self.simtime)
        self.simtime2 = np.arange(1*self.nsecs, 2*self.nsecs, self.dt)

        # self.x0 = 0.5*np.random.normal(size=(self.N,1))
        self.x0 = 0.5 * np.random.normal(size=(self.N, 1))
        self.z0 = 0.5 * np.random.normal(size=(1, self.odim))

        # EH stuff
        self.z_t = np.zeros((2,self.simtime_len))
        self.zn_t = np.zeros((2,self.simtime_len)) # noisy readout
        # self.zp_t = np.zeros((2,self.simtime_len))
        self.wo_len_t = np.zeros((2,self.simtime_len))
        self.dw_len_t = np.zeros((2,self.simtime_len))
        self.perf = np.zeros((1,self.odim))
        self.perf_t = np.zeros((2,self.simtime_len))
        self.mdltr = np.zeros((1,2))
        self.mdltr_t = np.zeros((2,self.simtime_len))
        self.r_t = np.zeros(shape=(self.N, self.simtime_len))
        self.zn_lp = np.zeros((1,2))
        self.perf_lp = np.zeros((1,2))
        self.perf_lp_t = np.zeros((2,self.simtime_len))
        # self.coeff_a = 0.2
        # self.coeff_a = 0.1
        self.coeff_a = 0.05
        # self.coeff_a = 0.03
        # self.coeff_a = 0.001
        # self.coeff_a = 0.0001
        # self.eta_init = 0.0001
        # self.eta_init = 0.001 # limit energy in perf
        self.eta_init = 0.0025 # limit energy in perf
        # self.eta_init = 0.01 # limit energy in perf
        self.T = 200000.
        # self.T = 2000.

        # exploration noise
        # self.theta = 1.0
        # self.theta = 1/4.
        self.theta = 0.1
        # self.state noise
        self.theta_state = 0.1
        # self.theta_state = 1e-3

        # leaky integration time constant
        # self.tau
        # self.tau = 0.001
        # self.tau = 0.005
        self.tau = 0.2
        # self.tau = 0.9
        # self.tau = 0.99
        # self.tau = 1.

        ############################################################
        # alternative controller network / reservoir from lib
        # FIXME: use config file
        # FIXME: use input coupling matrix for non-homogenous input scaling
        self.res = Reservoir2(N = self.N, p = self.p, g = self.g, alpha = 1.0, tau = self.tau,
                         input_num = self.idim, output_num = self.odim, input_scale = self.wi_amp,
                         feedback_scale = self.wf_amp, bias_scale = 0., eta_init = self.eta_init,
                         sparse=True)
        self.res.theta = self.theta
        self.res.theta_state = self.theta_state
        self.res.coeff_a = self.coeff_a

        self.res.x = self.x0
        self.res.r = np.tanh(self.res.x)
        self.res.z = self.z0
        self.res.zn = np.atleast_2d(self.z0).T

        # print res.x, res.r, res.z, res.zn

        print '   N: ', self.N
        print '   g: ', self.g
        print '   p: ', self.p
        print '   nsecs: ', self.nsecs
        print '   learn_every: ', self.learn_every
        print '   theta: ', self.theta

        # set point for goal based learning
        self.sp = 0.4

        # explicit memory
        # self.piwin = 100
        # self.piwin = 200
        # self.piwin = 500
        # self.piwin = 1000
        self.piwin = 2000

        self.x_t = np.zeros((self.idim, self.piwin))
        self.z_t = np.zeros((self.odim, self.piwin))

        # self.wgt_lim = 0.5 # barrel
        self.wgt_lim = 0.1
        self.wgt_lim_inv = 1/self.wgt_lim
        
        self.init = True
        print "init done"
Exemplo n.º 13
0
#!/usr/bin/env python
# August Soderberg
# [email protected]
# Autonomous Robotics
# PA - Line Follower
# 10/23/2020

import rospy
from nav_msgs.msg import Odometry
from std_msgs.msg import Float64MultiArray
from constants import *

def odom_cb(msg):
    global x, y
    x, y = msg.pose.pose.position.x, msg.pose.pose.position.y

rospy.init_node('gps_faker')
sub = rospy.Subscriber('odom', Odometry, odom_cb)
pub = rospy.Publisher('gps_data', Float64MultiArray, queue_size=1)

rate = rospy.Rate(10)
array = Float64MultiArray()
y = 0
x = 0

while not rospy.is_shutdown():
    array.data = [y, x, 4]
    pub.publish(array)
    rate.sleep()
Exemplo n.º 14
0
def conversion():
    #Iniciamos el nodo y declaramos las suscripciones y publicaciones de topics
    rospy.init_node('conversion', anonymous=True)
    pub = rospy.Publisher('/UR3_1/inputs/move_pose', FM, queue_size=10)
    rospy.Subscriber("UR3_1/outputs/pose", FM, callback1)
    rospy.Subscriber("configuracion", String, callback2)
    rospy.Subscriber("movimiento", FM, callback3)
    rate = rospy.Rate(10)  # 10hz

    while not rospy.is_shutdown():

        global iteracion

        #Si no hemos recibido ningun dato de movimiento no movemos el robot
        if (iteracion == True):

            print("NUEVO MOVIMIENTO")

            iteracion = False
            global j, ro, longitud
            Dt = longitud

            #-------------Vamos a transformar la orientacion recibida del robot--------------------
            #-------------en otra forma de orientacion que podemos manejar mas adelante------------

            #Primero calculamos el ANGULO y el EJE del vector de orientacion que recibimos
            angle = math.sqrt(ox * ox + oy * oy + oz * oz)
            axis = [ox / angle, oy / angle, oz / angle]

            #Creamos una matriz de orientacion a partir del angulo y el eje anteriores
            a = np.hstack((axis, (angle, )))
            Rm = matrix_from_axis_angle(a)

            #Obtenemos el Eje Z de nuestra matriz, que es el que necesitamos para los calculos
            z = Rm[2]
            #Guardamos la posicion del robot en la variable P
            P = [xi, yi, zi]

            #-------------Una vez tenemos posicion y orientacion vamos a calcular la nueva--------------------
            #-------------posicion y orientacion segun el movimiento que queremos para la herramienta------------

            #Para la primera vez que realizamos las operaciones vamos a tomar
            #una serie de valores determinados
            if (j == 0):
                fi = float(
                    fulcro / Dt
                )  #Calculamos fi con el valor inicial recibido por la interfaz
                Pf = P + fi * Dt * z  #El punto de fulcro lo calculamos al principio y no cambia
                print(Pf)

            #La posicion inicial de la herramienta se calcula a partir de los valores de posicion del robot mas la orientacion
            Pt = P + Dt * z

            #Nueva posicion de la punta con el incremento del Phantom
            Ptn = [Pt[0] + Ph1, Pt[1] + Ph2, Pt[2] + Ph3]

            #Nueva direccion en el eje z de la herramienta
            zn = Pf - Ptn

            #Distancia del punto de fulcro a la nueva posicion de la pinza
            Mzn = math.sqrt(zn[0] * zn[0] + zn[1] * zn[1] + zn[2] * zn[2])
            ro = Dt - Mzn

            #Nueva posicion del efector final del robot
            Pn = Pf + ro * zn / Mzn

            # El eje Z ya lo tnemos, pero lo hacemos unitario
            znn = [-zn[0] / Mzn, -zn[1] / Mzn, -zn[2] / Mzn]

            #-------------Para calcular la orientacion vamos a calcular los angulos de Euler--------------------
            #-------------a partir del eje Z de la matriz, el cual ya tenemos, y una vez tengamos---------------
            #-------------los amgulos, llamamos a la funcion que nos calcula la matriz de orientacion-----------

            b = math.atan2(math.sqrt(znn[0]**2 + znn[1]**2), znn[2])
            a = 0
            g = math.atan2((znn[1] / math.sin(b)), (-znn[0] / math.sin(b)))

            M = eulerZYZ([a, b, g])

            #Pasamos la orientacion a axis-angle, que es la que entiende nuestro simulador
            a = axis_angle_from_matrix(M)
            orientacion = [a[0] * a[3], a[1] * a[3], a[2] * a[3]]

            r = Pn - Ptn
            print("Incremento", [Ph1, Ph2, Ph3])
            print(" ")
            print('Nueva posicion efector Pn', Pn)
            print('Nueva posicion herramienta Ptn', Ptn)
            print(' ')
            print("Comprobaciones")
            print(' ')
            print('Actual posicion herramienta Pt', Pt)
            print('Longitud herramienta Dt',
                  math.sqrt(r[0] * r[0] + r[1] * r[1] + r[2] * r[2]))
            print(' ')
            print(' ')

            #Creamos la variable que contiene la posicion y orientacion que le vamos a dar a nuestro robot
            pose = FM()
            pose.data = [
                Pn[0], Pn[1], Pn[2], orientacion[0], orientacion[1],
                orientacion[2]
            ]
            #pose.data = [Pn[0], Pn[1], Pn[2], ox, oy, oz]

            #Publicamos la pose
            pub.publish(pose)

            #Aumentamos la iteracion
            j = j + 1

    rate.sleep()

    rospy.spin()
Exemplo n.º 15
0
    return copiaImg


def callback(img):
    np_arr = np.fromstring(img.data, np.uint8)
    imgCV = cv2.imdecode(np_arr, cv2.IMREAD_COLOR)

    imgCV = cv2.flip(imgCV, 2)

    imgCV = acharCirculos(imgCV)

    cv2.namedWindow('SHOW_DE_BOLA', cv2.WINDOW_NORMAL)
    cv2.imshow('SHOW_DE_BOLA', imgCV)
    cv2.waitKey(1)


def listenerImg():
    rospy.init_node('showAllCircles', anonymous=True)
    rospy.Subscriber('/raspicam_node/image/compressed', CompressedImage,
                     callback)
    rospy.spin()


if __name__ == "__main__":
    circulo = BoolStamped()
    arrayCoordenadas = Float64MultiArray()
    arrayCoordenadas.data = [0, 0, 0]

    listenerImg()
    # timing
    Ts = 0.008
    rate = rospy.Rate(125)

    # handle waypoints
    waypoints = np.array(commands['waypoints'])
    duration = waypoints[-1, 0]
    t_array = np.arange(0, duration, Ts)
    x_array = np.interp(t_array, waypoints[:, 0], waypoints[:, 1])
    y_array = np.interp(t_array, waypoints[:, 0], waypoints[:, 2])

    setpoints = np.zeros(3)
    setpoints_publisher = rospy.Publisher("/hybrid_force_controller/setpoints",
                                          Float64MultiArray,
                                          queue_size=1)

    index = 0
    while (not rospy.is_shutdown() and index < t_array.shape[0]):
        setpoints[0] = x_array[index]
        setpoints[1] = y_array[index]
        setpoints[2] = desired_force

        setpoints_msg = Float64MultiArray()
        setpoints_msg.data = setpoints

        setpoints_publisher.publish(setpoints_msg)

        index += 1
        rate.sleep()
Exemplo n.º 17
0
def choose_behaviors(number):
    global right_pub, left_pub, head_pub, emotionShow_pub, gesturePlay_pub, speechSay_pub, audioPlay_pub
    #talking:1~6
    if (number == 1):
        #show_both_hands:9s
        emotionShow_pub.publish("QT/talking")
        gesturePlay_pub.publish("numbergame/talking1")
        rospy.sleep(9)
    elif (number == 2):
        #stretch_talk:8s
        gesturePlay_pub.publish("numbergame/talking2")
        emotionShow_pub.publish("QT/talking")
        rospy.sleep(8)
    elif (number == 3):
        #challenge:5s
        gesturePlay_pub.publish("QT/challenge")
        emotionShow_pub.publish("QT/talking")
        time.sleep(5)
    elif (number == 4):
        #show left and right:10s
        emotionShow_pub.publish("QT/talking")
        gesturePlay_pub.publish("numbergame/talking3")
        rospy.sleep(10)
    elif (number == 5):
        #teaching,10s
        emotionShow_pub.publish("QT/talking")
        gesturePlay_pub.publish("numbergame/talking4")
        rospy.sleep(10)
    elif (number == 6):
        #teaching:10s
        emotionShow_pub.publish("QT/talking")
        gesturePlay_pub.publish("numbergame/talking5")
        rospy.sleep(10)
    elif (number == 7):
        #show:9s
        emotionShow_pub.publish("QT/talking")
        gesturePlay_pub.publish("numbergame/talking6")
        rospy.sleep(9)

    #listening:8~9
    elif (number == 8):
        #nod:4s
        head = Float64MultiArray()
        emotionShow_pub.publish("QT/showing_smile")
        head.data = [0, -10]
        head_pub.publish(head)
        time.sleep(1)
        head.data = [0, 10]
        head_pub.publish(head)
        time.sleep(1)
        head.data = [0, 0]
        head_pub.publish(head)
        time.sleep(2)
    elif (number == 9):
        #arm back smile:7s
        emotionShow_pub.publish("QT/calming_down")
        time.sleep(1)
        gesturePlay_pub.publish("QT/bored")
        time.sleep(6)

    #guessing:10~12
    elif (number == 10):
        #confused:11s
        emotionShow_pub.publish("QT/confused")
        gesturePlay_pub.publish("numbergame/thinking1")
        rospy.sleep(11)
    elif (number == 11):
        #touch head:11s
        emotionShow_pub.publish("QT/confused")
        gesturePlay_pub.publish("numbergame/thinking2")
        rospy.sleep(11)
    elif (number == 12):
        #thinking:11s
        emotionShow_pub.publish("QT/confused")
        gesturePlay_pub.publish("numbergame/thinking3")
        rospy.sleep(11)

    #feedback and encouragement:13~16
    elif (number == 13):
        #surprise:5.5s
        gesturePlay_pub.publish("QT/surprise")
        emotionShow_pub.publish("QT/surprise")
        time.sleep(5.5)
    elif (number == 14):
        #happy:5s
        gesturePlay_pub.publish("QT/happy")
        emotionShow_pub.publish("QT/happy")
        time.sleep(5)
    elif (number == 15):
        #hug:6s
        left_arm = Float64MultiArray()
        right_arm = Float64MultiArray()
        emotionShow_pub.publish("QT/happy")
        left_arm.data = [-20, -10, -15]
        left_pub.publish(left_arm)
        right_arm.data = [20, -10, -15]
        right_pub.publish(right_arm)
        time.sleep(3)
        left_arm.data = [90, -60, -30]
        left_pub.publish(left_arm)
        right_arm.data = [-90, -60, -30]
        right_pub.publish(right_arm)
        time.sleep(3)
    elif (number == 16):
        #hand clap:8.8s
        left_arm = Float64MultiArray()
        right_arm = Float64MultiArray()
        emotionShow_pub.publish("QT/happy")
        left_arm.data = [10, -90, -30]
        left_pub.publish(left_arm)
        right_arm.data = [-10, -90, -30]
        right_pub.publish(right_arm)
        time.sleep(1.8)
        left_arm.data = [10, -90, -90]
        left_pub.publish(left_arm)
        right_arm.data = [-10, -90, -90]
        right_pub.publish(right_arm)
        time.sleep(1)
        left_arm.data = [10, -90, -30]
        left_pub.publish(left_arm)
        right_arm.data = [-10, -90, -30]
        right_pub.publish(right_arm)
        time.sleep(1)
        left_arm.data = [10, -90, -90]
        left_pub.publish(left_arm)
        right_arm.data = [-10, -90, -90]
        right_pub.publish(right_arm)
        time.sleep(1)
        left_arm.data = [10, -90, -30]
        left_pub.publish(left_arm)
        right_arm.data = [-10, -90, -30]
        right_pub.publish(right_arm)
        time.sleep(1)
        left_arm.data = [90, -60, -30]
        left_pub.publish(left_arm)
        right_arm.data = [-90, -60, -30]
        right_pub.publish(right_arm)
        time.sleep(3)

    #special_function:17~19
    elif (number == 17):
        #hi/bye:7s
        gesturePlay_pub.publish("QT/hi")
        emotionShow_pub.publish("QT/happy")
        time.sleep(7)
    elif (number == 18):
        #fly kiss:7.5s
        gesturePlay_pub.publish("QT/kiss")
        time.sleep(1)
        emotionShow_pub.publish("QT/kiss")
        time.sleep(6.5)
    elif (number == 19):
        #yawn:6.8s
        gesturePlay_pub.publish("QT/yawn")
        time.sleep(0.8)
        emotionShow_pub.publish("QT/yawn")
        time.sleep(6)

    #rest
    elif (number == 20):
        abc = 1

    else:
        print("Please use a correct number!")
Exemplo n.º 18
0
 def update_state(self):
     self.state = np.array(self.im_data+self.imu_data)
     self.state_pub.publish(Float64MultiArray(data=self.state))
Exemplo n.º 19
0
    def send_cmd(self, command):  #command = Float64MultiArray
        next_joint_state = Float64MultiArray()

        next_joint_state.data = command
        self.joint_cmd_pub.publish(next_joint_state)
Exemplo n.º 20
0
def talker():

    print('starting node')

    # Publishers

    # here I am creating the publisher, you need to insert the topic name of the submarine
    pub = rospy.Publisher('/g500/thrusters_input',
                          Float64MultiArray,
                          queue_size=10)
    # since this is a node, it needs to have a name
    rospy.init_node('talker', anonymous=False)
    rate = rospy.Rate(10)  # 10hz

    # Now here I create a message, move odometry, from the twiststamped type of message
    msg = Float64MultiArray()

    msg.data = [0, 0, 0, 0, 0]

    # Reference velocity
    v_ref = 0.5  # m/s
    # Initialization values

    Kp = 1
    Ti = 1
    Td = 0.001
    dt = 0.1
    k1 = Kp * (1 + Td / dt)
    k2 = -Kp * (1 + 2 * Td / dt - dt / Ti)
    k3 = Kp * (Td / Ti)

    v0 = 0
    error_v0 = 0
    error_v1 = 0
    error_v2 = 0

    rospy.Subscriber('/g500/camera1', Image, callback, queue_size=1)
    rospy.Subscriber('/g500/dvl', DVL, callback_dvl, queue_size=1)
    while not rospy.is_shutdown():

        # for now I dont pay attention to the camera

        print('velocity in x', vel_v)

        error_v2 = error_v1
        error_v1 = error_v0
        error_v0 = v_ref - vel_v
        control_v = v0 + k1 * error_v0 + k2 * error_v1 + k3 * error_v2
        control_v = limit(control_v, 1.0)
        msg.data[0] = control_v
        msg.data[1] = control_v
        v0 = control_v

        pub.publish(msg)
        rate.sleep()

    # when rospy has been shutdown (ctrl + c )stop turtlebot
    rospy.loginfo("Stop")
    print('Stopping node')
    # a default Twist has linear.x of 0 and angular.z of 0.  So it'll stop TurtleBot
    pub.publish(msg)
    # sleep just makes sure TurtleBot receives the stop command prior to shutting down the script
    rospy.sleep(1)
    print('node stopped')
    securitySpeed_publisher.publish(msg)


if __name__ == '__main__':
    #     x = {}
    #     y = {}
    #     z = {}
    #     securitySpeed = {}

    # all_drones = ['cf1', 'cf2', 'cf3', 'cf4', 'cf5', 'cf6']
    for drone in all_drones:
        x[drone] = 0
        y[drone] = 0
        z[drone] = 0

        securitySpeed[drone] = 0
    # global securitySpeed, msg, x1, x2, x3, y1, y2, y3, z1, z2, z3, x4, x5, x6, y4, y5, y6, z4, z5, z6

    # x1, x2, x3, y1, y2, y3, z1, z2, z3 = 1000, 100, 10, 1000, 100, 10, 1000, 100, 10
    # x4, x5, x6, y4, y5, y6, z4, z5, z6 = 1000, 100, 10, 1000, 100, 10, 1000, 100, 10
    # securitySpeed= [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
    msg = Float64MultiArray()

    rospy.init_node('security', anonymous=True)

    securitySpeed_publisher = rospy.Publisher('/security_speed',
                                              Float64MultiArray,
                                              queue_size=10)
    cf2_subscriber = rospy.Subscriber('/tf', TFMessage, cf_callback)
    rospy.spin()
Exemplo n.º 22
0
    def __init__(self):
        #CREACION DE BROADCAST
        self.pub_tf = rospy.Publisher("/tf",
                                      tf2_msgs.msg.TFMessage,
                                      queue_size=5)
        self.broadcts = tf2_ros.TransformBroadcaster()
        self.transform = TransformStamped()

        #SUBSCRIPCION AL TOPICO DE COMUNICACION ENTRE TF_NODE Y CONTROLADOR_NODE
        rospy.Subscriber("/next_coord", Bool, self.callback_next)
        #rospy.Subscriber("/vel_robot",numpy_msg(Twist),self.callback_position)
        rospy.Subscriber("/rover/gps/pos", NavSatFix, self.callback_gps)
        rospy.Subscriber("/rover/imu", Imu, self.callback_imu)
        self.pub1 = rospy.Publisher("/goal", Twist, queue_size=10)

        #PARAMETROS
        self.theta = -rospy.get_param("/theta") * 3.141592 / 180.0
        self.ds = rospy.get_param("/ds")
        self.f = rospy.get_param("/f")
        self.coordenadas1 = rospy.get_param("/coordenadas")
        self.position = Float64MultiArray()
        self.pos_x = 0
        self.pos_y = 0
        self.theta = 0
        self.first_gps = 1
        self.pos_x_init = 0
        self.pos_y_init = 0
        self.angles_odom_base = [0, 0, 0, 0]
        self.angles_goal_odom = [0, 0, 0, 0]
        self.Meta = Twist()
        self.theta_z = 0

        while self.first_gps:
            self.i = 0  #VARIABLE PARA RECORRER MATRIZ SELF.TRAY (COORDENADAS DE TRAYECTORIA EN EL SISTEMA DEL ROBOT)

        self.update_coor(
        )  ##Actualizacion de coordenadas y creacion de trayectoria
        self.evadir_mpi()
        self.creacion_tray()
        #rospy.loginfo("----------------------------------------------")
        #rospy.loginfo(self.coordenadas_new)
        #rospy.loginfo("----------------------------------------------")
        #rospy.loginfo(self.tray)

        rate = rospy.Rate(self.f)

        rospy.loginfo("Nodo TF inicio correctamente ")

        while (not rospy.is_shutdown()):
            if (self.i < len(self.tray) - 1):
                self.update_odom()  ## Se envia odometria y meta en tf
                self.update_goal(self.i + 1)
                self.Meta.linear.x = self.tray[self.i + 1][0]
                self.Meta.linear.y = self.tray[self.i + 1][1]
                self.Meta.linear.z = 0.0
                self.Meta.angular.x = 0.0
                self.Meta.angular.y = 0.0
                self.Meta.angular.z = self.tray[self.i + 1][2]

                self.pub1.publish(self.Meta)

                rate.sleep()
Exemplo n.º 23
0
class TestSequence:
    command = Float64MultiArray()
    command.layout = MultiArrayLayout()
    command.layout.dim = [MultiArrayDimension()]

    iterator = 1  #step through commands in the sequence - 0 should be reserved for takeoff

    def __init__(self, NUM_UAV):

        global status

        self.command.layout.dim[0].label = 'command'
        self.command.layout.dim[0].size = 4
        self.command.layout.dim[0].stride = 4 * 8
        self.command.layout.data_offset = 0

        #testing circle  data = [x, y, r, n]; n - sequence number
        self.command.data = [0, 0, 10, 0]

        status = [Int8() for i in range(NUM_UAV)]
        sum_stat = Int8()
        sum_stat.data = 0

        # subscribing to each uav's status
        for i in range(NUM_UAV):

            exec('def status_cb' + str(i) + '(msg): status[' + str(i) +
                 '] = msg')
            #exec ('def state_cb' + str(i) + '(msg): state[' + str(i) + '] = msg' )
            #rospy.Subscriber('/mavros/state')
            rospy.Subscriber('/sequencer/status' + str(i),
                             Int8,
                             callback=eval('status_cb' + str(i)))

        rospy.init_node('sequencer_test', anonymous=True)

        print "INIT\n"

        pub = rospy.Publisher('/sequencer/command',
                              Float64MultiArray,
                              queue_size=10)
        rospy.Subscriber('/sequencer/status',
                         Float64MultiArray,
                         callback=self.status_cb)

        rate = rospy.Rate(10)  # Hz
        rate.sleep()

        # wait to all drones to connect to the sequencer
        nc = pub.get_num_connections()
        while nc < NUM_UAV:
            nc = pub.get_num_connections()
            rate.sleep()

        print 'num_connections = ' + str(nc)
        print 'publishing - \n' + str(self.command)
        pub.publish(self.command)
        sys.stdout.flush()

        while not rospy.is_shutdown():
            publish = True
            for i in range(NUM_UAV):
                if status[i].data != self.command.data[3]:
                    publish = False
            if publish and self.iterator < 5:
                self.command.data = self.nextCommand()
                pub.publish(self.command)
            sys.stdout.flush()

    def status_cb(self, msg):
        self.status = msg

    def nextCommand(self):
        if self.iterator == 4:  #flip to velocity control
            temp = [0, 0, 30, self.iterator]
        elif self.iterator == 3:
            temp = [0, 0, 30, self.iterator]
        elif self.iterator == 2:
            temp = [0, 0, 40, self.iterator]
        elif self.iterator == 1:
            temp = [0, 0, 10, self.iterator]
        self.iterator += 1
        return temp
    def __init__(self, parent=None):

        super(Thread_transmit_joint_data, self).__init__(parent)
        self.eds_file = rp.get_path(
            'canopen_communication') + "/file/Copley.eds"
        #print path.exists(eds_file)

        # 用于接收逆解
        # this publisher was to sent desacrtes points by inverse algorithm to getting the joint datas.
        self.pub_wdc = rospy.Publisher('climboI5d_Descartes_point',
                                       Float64MultiArray,
                                       queue_size=5)
        # this subscriber was to receive the joint data.
        self.sub_wdc = rospy.Subscriber('climboI5d_Inverse_solution',
                                        Float64MultiArray,
                                        self.Inverse_solution_callback)
        self.descartes_point = Float64MultiArray()
        self.inverse_solution = Float64MultiArray()
        self.descartes_point.data = [1] * 18
        self.inverse_solution.data = [1] * 10

        # 关节数据
        self.__G0_data = 0.0
        self.__I1_data = 0.0
        self.__T2_data = 0.0
        self.__T3_data = 0.0
        self.__T4_data = 0.0
        self.__I5_data = 0.0
        self.__G6_data = 0.0

        #判断是否到达
        self.__I1_reached = False
        self.__T2_reached = False
        self.__T3_reached = False
        self.__T4_reached = False
        self.__I5_reached = False

        # 设置零点使用
        self.__I1_error = 0
        self.__T2_error = 0
        self.__T3_error = 0
        self.__T4_error = 0
        self.__I5_error = 0
        # 用于判断关节是否为新值
        self.__G0_old_data = 0.0
        self.__I1_old_data = 0.0
        self.__T2_old_data = 0.0
        self.__T3_old_data = 0.0
        self.__T4_old_data = 0.0
        self.__I5_old_data = 0.0
        self.__G6_old_data = 0.0
        # 关节速度
        self.__I1_velocity = 0
        self.__T2_velocity = 0
        self.__T3_velocity = 0
        self.__T4_velocity = 0
        self.__I5_velocity = 0
        # 用于判断关节速度是否为新值
        self.__I1_old_velocity = 0
        self.__T2_old_velocity = 0
        self.__T3_old_velocity = 0
        self.__T4_old_velocity = 0
        self.__I5_old_velocity = 0
        # 末端笛卡尔点初始姿态
        self.__Descartes_X = 0.5864
        self.__Descartes_Y = 0
        self.__Descartes_Z = 0
        self.__Descartes_RX = 0
        self.__Descartes_RY = 0
        self.__Descartes_RZ = 3.141592654
        # 末端笛卡尔点初始速度
        self.__X_velocity = 0
        self.__Y_velocity = 0
        self.__Z_velocity = 0
        self.__RX_velocity = 0
        self.__RY_velocity = 0
        self.__RZ_velocity = 0
        # 运行模式
        self.__position_mode = False
        self.__velocity_mode = False
        self.__gripper_mode = False
        # 停止方式
        self.stop = False
        self.quick_stop = False
        # 判断采用哪种反馈
        self.__feedback_joint = False
        self.__feedback_descartes = False
        self.__feedback_offline = False
        # 离线数据索引
        self.__index = 0
        # 存储末端笛卡尔点位置,速度
        self.__descartes_data = []
        # 存储离线数据
        self.__offline_data = []
        # 关节误差
        self.__error_joint = 4e-3
def dodge_maneuver():
    global scan_rectangle_R
    global scan_rectangle_F
    global scan_rectangle_L
    global twist
    global cmd_vel_pub

    right_flag = True
    right_count = 0
    left_flag = True
    left_count = 0
    obstacle_edge_flag = True

    min_max_arr = Float64MultiArray()

    min_max_topic = "/range_min_max"
    min_max_arr = rospy.wait_for_message(min_max_topic, Float64MultiArray)

    minimum, minimum_range = min_max_arr.data[0], min_max_arr.data[1]
    robot_center, robot_center_range = min_max_arr.data[2], min_max_arr.data[3]
    maximum, maximum_range = min_max_arr.data[4], min_max_arr.data[5]

    print('minimum : ', minimum)
    print('minimum_range : ', minimum_range)
    print('maximum : ', maximum)
    print('maximum_range : ', maximum_range)

    scan_rectangle_R_topic = "/scan_rectangle_R"
    scan_rectangle_F_topic = "/scan_rectangle_F"
    scan_rectangle_L_topic = "/scan_rectangle_L"
    rospy.Subscriber(scan_rectangle_R_topic, Float64MultiArray,
                     scan_rectangle_R_send)
    rospy.Subscriber(scan_rectangle_F_topic, Float64MultiArray,
                     scan_rectangle_F_send)
    rospy.Subscriber(scan_rectangle_L_topic, Float64MultiArray,
                     scan_rectangle_L_send)

    theta, center = maximum - minimum, (maximum + minimum) / 2
    center_2_right = minimum_range * math.sin(
        math.radians(robot_center - minimum))
    center_2_left = maximum_range * math.sin(
        math.radians(maximum - robot_center))
    # if center_2_left < 0 :
    #     center_2_left = 0
    # if center_2_right < 0 :
    #     center_2_right = 0
    obstacle_range = math.sqrt(minimum_range**2 + maximum_range**2 -
                               2 * minimum_range * maximum_range *
                               math.cos(math.radians(theta)))

    print("center : ", center)
    print("obstacle_range : ", obstacle_range)
    print("center_2_right : ", center_2_right)
    print("center_2_left : ", center_2_left)

    for x in scan_rectangle_R:
        right_count = right_count + 1 if x <= 1 else right_count
        right_flag = False if right_count > 15 else True

    for x in scan_rectangle_L:
        left_count = left_count + 1 if x <= 1 else left_count
        left_flag = False if left_count > 15 else True

    rotation = -1 if right_flag == True and left_flag == False else +1 if left_flag == True and right_flag == False else 9999 if right_flag == False and left_flag == False else 0

    if rotation == 0:
        if center_2_left >= center_2_right:
            horizontal_time = (center_2_right + 0.5) / 0.2
            rotation = -1
        else:
            horizontal_time = (center_2_left + 0.5) / 0.2
            rotation = 1
    elif rotation == 1:
        horizontal_time = (center_2_left + 0.5) / 0.2

    elif rotation == -1:
        horizontal_time = (center_2_right + 0.5) / 0.2

    elif rotation == 9999:
        return 0

    vertical_time = 4

    original_goal_z = robot_z

    goal_z = robot_z + (rotation * 90)
    if goal_z >= 360:
        goal_z = goal_z - 360
    elif goal_z < 0:
        goal_z = 360 + goal_z

    for i in range(1, 8):
        if i == 1 or i == 3 or i == 5 or i == 7:
            if i == 1:
                x = 1
            elif i == 3:
                x = -1
                goal_z = original_goal_z
            elif i == 5:
                goal_z = z + (rotation * (-90))
                if goal_z >= 360:
                    goal_z = goal_z - 360
                elif goal_z < 0:
                    goal_z = 360 + goal_z
                x = -1
            elif i == 7:
                x = 1
                goal_z = original_goal_z
            print("goal_z")
            while (abs(goal_z - robot_z) >= 2):  #1 rotate
                twist.angular.z = a_val * rotation * x
                cmd_vel_pub.publish(twist)

        elif i == 2 or i == 4 or i == 6:
            if i == 2:
                go_time = horizontal_time
                print("horizontal_time : ", horizontal_time)
            elif i == 4:
                go_time = vertical_time
                if vertical_go(rotation) == 1:
                    return 1
                print("vertical_time : ", vertical_time)
            elif i == 6:
                go_time = horizontal_time
                print("horizontal_time : ", horizontal_time)

            start = time.time()
            while (time.time() - start <= go_time):  #1 go
                if warning_msg.warning[1] == 'front':
                    print("front_again")
                    twist_init()
                    cmd_vel_pub.publish(twist)
                    return 1
                twist.linear.x = x_val
                cmd_vel_pub.publish(twist)

        twist_init()
        cmd_vel_pub.publish(twist)
        rospy.sleep(1)

    return 0
import cv2.cv as cv

# initialize the camera and grab a reference to the raw camera capture
camera = PiCamera()
camera.resolution = (160,120)
camera.framerate = 32
rawCapture = PiRGBArray(camera, size=(160,120))

# allow the camera to warm up
time.sleep(0.1)

# initialize publisher
rospy.init_node('ball_position',anonymous=True)
pub = rospy.Publisher('ball_pos',Float64MultiArray,queue_size = 10)

ball_pos = Float64MultiArray()

flag=1

for frame in camera.capture_continuous(rawCapture, format='bgr', use_video_port=True):
    image = frame.array

    if flag:
        # setup initial location of window
        r,h,c,w = 80-40,80+40,64-30,64+30  # simply hardcoded the values
        track_window = (c,r,w,h)
        
        # set up the ROI for tracking
        hsv_roi = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

        # define range of blue color in HSV
#!/usr/bin/env python
import rospy
from std_msgs.msg import Float64MultiArray
from my_pkg.msg import Topic1

import numpy as np
result = Float64MultiArray()


def quaternion_to_euler(w, x, y, z):

    sinr_cosp = 2 * (w * x + y * z)
    cosr_cosp = 1 - 2 * (x**2 + y**2)
    roll = np.arctan2(sinr_cosp, cosr_cosp)

    sinp = 2 * (w * y - z * x)
    pitch = np.where(
        np.abs(sinp) >= 1,
        np.sign(sinp) * np.pi / 2, np.arcsin(sinp))

    siny_cosp = 2 * (w * z + x * y)
    cosy_cosp = 1 - 2 * (y**2 + z**2)
    yaw = np.arctan2(siny_cosp, cosy_cosp)

    return roll, pitch, yaw


def callback(msg):
    result.data = quaternion_to_euler(msg.x, msg.y, msg.z, msg.w)
    rospy.loginfo(result)
Exemplo n.º 28
0
def callback(data):
    a = np.reshape(data.data,(2048,2048))
    setx = [[] for ii in range(10)]
    sety = [[] for ii in range(10)]
    setall = [[] for ii in range(10)]
    X = len(a)-1
    Y = len(a[0])-1
    neighbors = lambda x, y : [(x2, y2) for x2 in range(x-5, x+6)
                               for y2 in range(y-5, y+6)
                               if (-1 < x <= X and
                                   -1 < y <= Y and
                                   (x != x2 or y != y2) and
                                   (0 <= x2 <= X) and
                                   (0 <= y2 <= Y))]
    for rep in range(5):
        pointx = start[0]
        pointy = start[1]
        X = len(a)-1
        Y = len(a[0])-1
        while (pointx != stop[0])|(pointy!=stop[1]):
            n = neighbors(pointx,pointy)
            p = random.choice(n)
            wcount = 0
           
            while((((abs(stop[0]-p[0]))>(abs(stop[0]-pointx)))&
                   ((abs(stop[1]-p[1]))>(abs(stop[1]-pointy))))|
                    (a[p[0]][p[1]]!=0)|
                     ((lookup(p[0],p[1],a) == 0)&
                     (lookdown(p[0],p[1],a) == 0)&
                     (lookleft(p[0],p[1],a) == 0)&
                     (lookright(p[0],p[1],a) == 0))|
                     ([p[0],p[1]] in setall)):
                p = random.choice(n)
                wcount+=1
                if wcount == 300:
                    break
            if (stop[0],stop[1]) in n:
                 p = (stop[0],stop[1])
            setx[rep].append(p[0])
            sety[rep].append(p[1])
            setall[rep].append([p[0],p[1]])
            pointx = p[0]
            pointy = p[1]
            if ((len(setall[rep])>2000)|(wcount==300)):
                setx[rep] = []
                sety[rep] = []
                setall[rep] = []
                pointx = start[0]
                pointy = start[1]
                X = len(a)-1
                Y = len(a[0])-1
        ptr = 1
        while (ptr<len(setall[rep])-1):
            kk = neighbors(setx[rep][ptr-1],sety[rep][ptr-1])
            if (((sqrt((abs(setx[rep][ptr+1] - setx[rep][ptr-1])^2) + 
                ((abs(sety[rep][ptr+1] - sety[rep][ptr-1])^2)))<
               (sqrt((abs(setx[rep][ptr] - setx[rep][ptr-1])^2) + 
                ((abs(sety[rep][ptr] - sety[rep][ptr-1])^2)))))|
                ((setx[rep][ptr+1],sety[rep][ptr+1]) in kk))|
                (a[((setx[rep][ptr+1]-setx[rep][ptr-1])/2)+setx[rep][ptr-1]]
                [((sety[rep][ptr+1]-sety[rep][ptr-1])/2)+sety[rep][ptr-1]] == 0)):
                    del setx[rep][ptr]
                    del sety[rep][ptr]
                    del setall[rep][ptr]
                    ptr+=1
            else:
                ptr+=1
    pos = 0           
    for rep in range(5):
        if(len(setx[rep])<len(setx[pos])):
            pos = rep
    arr = Float64MultiArray()
    rate = rospy.Rate(100) # 10hz
    sety[pos]= scipy.ndimage.gaussian_filter(sety[pos],6)
    setx[pos] = scipy.ndimage.gaussian_filter(setx[pos],10)
#    fig, ax = plt.subplots()
#    ax.plot(sety[pos], setx[pos])
#    ax.imshow(a)
#    plt.show()

    setsend = [[0,0]for ii in range(len(setx[pos]))]
    for i in range(len(setx[pos])):
        setsend[i] = [setx[pos][i],sety[pos][i]]
    arr.data = np.ndarray.flatten(np.array(setsend)).tolist() 
    for i in range(len(arr.data)):
        arr.data[i] -= 1024
        arr.data[i]/=scale

    pub.publish(arr)
    print arr
    exit(0)
Exemplo n.º 29
0
    def spin(self):
        # Prob. Grid initialisation constant
        prob_init_const = 0.01

        rospy.loginfo("Prob_Grid_Updater: Starting Spin function")
        r = rospy.Rate(1)
        while not rospy.is_shutdown():
            cv_xdim = self.r0_current_vision.layout.dim[1].size
            cv_ydim = self.r0_current_vision.layout.dim[0].size

            new_prob_grids = Float64MultiArray()

            new_prob_grids.layout.dim.extend([
                MultiArrayDimension(),
                MultiArrayDimension(),
                MultiArrayDimension()
            ])
            new_prob_grids.layout.dim[0].size = 3
            new_prob_grids.layout.dim[0].label = "grids"
            new_prob_grids.layout.dim[1].label = "rows"
            new_prob_grids.layout.dim[1].size = cv_ydim
            new_prob_grids.layout.dim[2].label = "cols"
            new_prob_grids.layout.dim[2].size = cv_xdim

            new_prob_grids.data = []

            # Assign new / old times
            if self.first_time == True:
                rospy.loginfo(
                    "Prob_Grid_Updater: First time so initialising prob grids")
                self.last_update_time = rospy.get_time()

                # init the CP grids

                # data initialisations
                # Expected and CP grid uniformly as 0
                for i in range(0, 3):
                    for j in range(0, cv_ydim):
                        for k in range(0, cv_xdim):
                            if (i == 0):
                                new_prob_grids.data.append(prob_init_const)
                            else:
                                new_prob_grids.data.append(0)

                self.first_time = False
            else:
                self.current_time = rospy.get_time()

                # rospy.loginfo("Prob_Grid_Updater: Current Time = %i", self.current_time)
                expected_list = self.update_exp_grid()
                prob_list = self.update_prob_grid()
                cp_list = self.update_cp_grid()
                new_prob_grids.data.extend(prob_list)
                new_prob_grids.data.extend(cp_list)
                new_prob_grids.data.extend(expected_list)
                # self.print_list(prob_list,20)
                # print(" ")
                # self.print_list(expected_list, 20)
                # print(" ")
                # self.print_list(cp_list, 20)

            self.publish_to_topics(new_prob_grids)
            self.last_update_time = self.current_time

            # rospy.loginfo('Updated Prob_Grids')

            r.sleep()
Exemplo n.º 30
0
    def callback2(self, data):
        # Recieve the image
        try:
            self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8")
        except CvBridgeError as e:
            print(e)

        #Blob detection-------------------------------------------------------

        def detect_red(self, image1, image2):
            #smooth the image and reduce noise
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            #convert colours to HSV
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            #set the HSV values for red
            lower_red1 = np.array([0, 200, 0])
            higher_red1 = np.array([0, 255, 255])
            #Apply threshold to seperate the blob from rest of the robot
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            #convert to grey scale
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            #Detect the edges
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            #Find the contours
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            #Find the center coordinates and the radius of the blob
            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            #convert to integers
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            #similar to above, but for image 2
            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([0, 200, 0])
            higher_red2 = np.array([0, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_blue(self, image1, image2):
            #similar approach as detect_blue but different colour threshold
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([70, 0, 0])
            higher_red1 = np.array([255, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([70, 0, 0])
            higher_red2 = np.array([255, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_green(self, image1, image2):
            #similar approach as detect_blue but different colour threshold
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([55, 0, 0])
            higher_red1 = np.array([100, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([55, 0, 0])
            higher_red2 = np.array([100, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_yellow(self, image1, image2):
            #similar approach as detect_blue but different colour threshold
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([16, 244, 0])
            higher_red1 = np.array([51, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))
            radius1 = int(radius1)

            image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0)
            hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV)
            lower_red2 = np.array([16, 244, 0])
            higher_red2 = np.array([51, 255, 255])
            red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2)
            res_red2 = cv2.bitwise_and(image_gau_blur2,
                                       image_gau_blur2,
                                       mask=red_range2)
            red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY)
            canny_edge2 = cv2.Canny(red_s_gray2, 30, 70)
            contours2, hierarchy2 = cv2.findContours(canny_edge2,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)

            (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0])
            cx, cz2 = (int(x2), int(y2))
            radius2 = int(radius2)

            return np.array([cx, cy, cz1, cz2])

        def detect_blue_contours(image1):
            #similar to detect_red(), this one only returns the positions of the contour
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([70, 0, 0])
            higher_red1 = np.array([255, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            return np.array([contours1])

        def detect_yellow_contours(image1):
            #similar to detect_red(), this one only returns the positions of the contour
            image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0)
            hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV)
            lower_red1 = np.array([16, 244, 0])
            higher_red1 = np.array([51, 255, 255])
            red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1)
            res_red1 = cv2.bitwise_and(image_gau_blur1,
                                       image_gau_blur1,
                                       mask=red_range1)
            red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY)
            canny_edge1 = cv2.Canny(red_s_gray1, 30, 70)
            contours1, hierarchy1 = cv2.findContours(canny_edge1,
                                                     cv2.RETR_EXTERNAL,
                                                     cv2.CHAIN_APPROX_NONE)
            (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0])
            cy, cz1 = (int(x1), int(y1))

            return np.array([contours1])

        def get_y1_y2(yellow_contours, blue_contours):
            #finds the z value at the top of yellow blob
            y1 = np.min(yellow_contours, axis=0)
            y1 = y1[0][0]
            y1 = y1[:, 1]

            #finds the z value at the bottom of blue blob
            y2 = np.max(blue_contours, axis=0)
            y2 = y2[0][0]
            y2 = y2[:, 1]

            return y1, y2

        def pixelTometer(self, image1, image2):
            #gets the contour coordinates of the blue and yellow
            yellow_contours = detect_yellow_contours(image2)
            blue_contours = detect_blue_contours(image2)
            #finds the z value of center of mass of blue blob
            y2 = detect_blue(self, image1, image2)
            y2 = y2[3]

            #returns the position of arm 1 ends
            y1, y2 = get_y1_y2(yellow_contours, blue_contours)

            #get the pixel to meter ratio by dividing arm1 length by pixel distance calculated
            p2m = 2.5 / (y1 - y2)
            #65 is the best number

            return p2m

        #----------------------------------------------------------------------------------------------
        #Angle Detection starts here
        def detect_angles_blob(self, image1, image2):
            #Calculate the pixel to meter ratio
            try:
                p = pixelTometer(self, image1, image2)
                self.p2m = p
            except Exception as e:
                p = self.p2m

            #find the positions of the blob

            try:
                green = detect_green(self, image1, image2)
                self.green = green
            except Exception as e:
                green = self.green

            try:
                red = detect_red(self, image1, image2)
                self.red = red
            except Exception as e:
                red = self.red

            #convert to meters

            p = pixelTometer(self, image1, image2)
            yellow = detect_yellow(self, image1, image2)
            blue = detect_blue(self, image1, image2)

            #convert from pixel frame to camera frame on z value
            green[2] = 800 - green[2]
            yellow[2] = 800 - yellow[2]
            red[2] = 800 - red[2]

            #get ja1, ja and ja3
            ja1 = 0.0
            ja3 = get_ja3(green, yellow, p)
            ja2 = get_ja2(green, yellow, p, ja3)

            try:
                green = detect_green(self, image1, image2)
                self.green = green
            except Exception as e:
                green = self.green

            try:
                red = detect_red(self, image1, image2)
                self.red = red
            except Exception as e:
                red = self.red

            yellow = p * detect_yellow(self, image1, image2)
            blue = p * detect_blue(self, image1, image2)

            #get ja4 value
            ja4 = np.arctan2(
                (green[2] - red[2]), -(green[1] - red[1])) - np.pi / 2 - ja2

            return np.array([ja1, ja2, ja3, ja4])

        def angle_trajectory(self):
            #the angle coordinates given to the target
            curr_time = np.array([rospy.get_time() - self.time_trajectory])
            ja1 = 0.1
            ja2 = float((np.pi / 2) * np.sin((np.pi / 15) * curr_time))
            ja3 = float((np.pi / 2) * np.sin((np.pi / 18) * curr_time))
            ja4 = float((np.pi / 2) * np.sin((np.pi / 20) * curr_time))
            return np.array([ja1, ja2, ja3, ja4])

        def get_ja3(green_posn, yellow_posn, p):
            #find the distance between green and yellow
            green = green_posn - yellow_posn
            #convert the distance to meter
            X_green = green[0] * p
            #X_green[0] cannot be greater than 3.5 or less than -3.5.
            #if the code reads that, it might be a pixel error. Therefore we are forcing the system to assume its max value
            if X_green > 3.5:
                X_green = 3.5
            elif X_green < -3.5:
                X_green = -3.5

            ja3 = np.arcsin(X_green / 3.5)
            return ja3

        def get_ja2(green_posn, yellow_posn, p, ja3):
            green = green_posn - yellow_posn
            Y_green = green[1] * p

            #Y_green[0] cannot be greater than 3.5 or less than -3.5.
            #if the code reads that, it might be a pixel error. Therefore we are forcing the system to assume its max value
            if Y_green[0] > 3.5:
                Y_green[0] = 3.5
            elif Y_green[0] < -3.5:
                Y_green[0] = -3.5

            #calculate the value before being supplied into arcsin()
            arc_sin_val = np.round(Y_green[0] / (-3.5 * np.cos(ja3)), 2)

            #value inside the arcsin() cannot be greater than 1 or less than -1
            #if the number is greater or lower, we are focing it to accept the largest possible value
            if arc_sin_val > 1:
                arc_sin_val = 1
            elif arc_sin_val < -1:
                arc_sin_val = -1

            ja2 = np.arcsin(arc_sin_val)

            return ja2

        self.joints = Float64MultiArray()
        #get the joint angles from computer vision
        self.joints.data = detect_angles_blob(self, self.image1, self.image2)
        #get the joint angles generated automatically
        ja1, ja2, ja3, ja4 = angle_trajectory(self)
        self.joint1 = Float64()
        self.joint1.data = 0
        self.joint2 = Float64()
        self.joint2.data = ja2
        self.joint3 = Float64()
        self.joint3.data = ja3
        self.joint4 = Float64()
        self.joint4.data = ja4

        #print(curr_time)

        try:
            self.image_pub1.publish(
                self.bridge.cv2_to_imgmsg(self.image1, "bgr8"))
            self.image_pub2.publish(
                self.bridge.cv2_to_imgmsg(self.image2, "bgr8"))
            self.joints_pub.publish(self.joints)
            self.robot_joint1_pub.publish(self.joint1)
            self.robot_joint2_pub.publish(self.joint2)
            self.robot_joint3_pub.publish(self.joint3)
            self.robot_joint4_pub.publish(self.joint4)

        except CvBridgeError as e:
            print(e)