Exemplo n.º 1
0
    def get_features_new(self, frame, target_points, rect, extra_incr):

        if DEBUG:
            print "Features from rect ", rect

        full = Image.fromstring("L", frame.size, frame.rawdata)
        (x, y, w, h) = (int(rect[0]), int(rect[1]), int(rect[2]), int(rect[3]))
        innerbox = [max(0, x - extra_incr), max(0, y - extra_incr)]
        innerbox += [
            min(full.width, x + w + extra_incr),
            min(full.height, y + h + extra_incr)
        ]
        incr = 16
        outerbox = [max(0, innerbox[0] - incr), max(0, innerbox[1] - incr)]
        outerbox += [
            min(full.width, innerbox[2] + incr),
            min(full.height, innerbox[3] + incr)
        ]
        subim = full.crop(outerbox)

        sd = starfeature.star_detector(outerbox[2] - outerbox[0] + 1,
                                       outerbox[3] - outerbox[1] + 1,
                                       self.num_scales,
                                       self.feature_detector.thresh,
                                       self.line_thresh)
        results = [(x1, y1)
                   for (x1, y1, s1, r1) in sd.detect(subim.tostring())]
        real_incr = [abs(i1 - o1) for (i1, o1) in zip(innerbox, outerbox)]
        return [(x1 - real_incr[0] + 1, y1 - real_incr[1] + 1)
                for (x1, y1) in results
                if (real_incr[0] < x1) and (real_incr[1] < y1) and (
                    x1 < outerbox[2] - real_incr[2]) and (
                        y1 < outerbox[3] - real_incr[3])]
  def get_features(self, frame, target_points, rect2d, censize3d):
    
    if DEBUG:
      print "Features from rect ", rect2d
    
    # Clear out all of the match info since it's not valid anymore.
    frame.matches = []
    frame.desc_diffs = []
    frame.good_matches = []

    # Extract 2d keypoints and get their disparities
    full = Image.fromstring("L",frame.size,frame.rawdata)
    (x,y,w,h) = (int(rect2d[0]), int(rect2d[1]), int(rect2d[2]), int(rect2d[3]))
    incr = 16
    subim = full.crop((x-incr,y-incr,x+w+incr,y+h+incr))
    
    sd = starfeature.star_detector(w+2*incr, h+2*incr, self.num_scales, self.feature_detector.thresh, self.line_thresh)
    results = [ (x1,y1) for (x1,y1,s1,r1) in sd.detect(subim.tostring()) ]
    frame.kp2d = [(x-incr+x1,y-incr+y1) for (x1,y1) in results if (incr<x1) and (incr<y1) and (x1<w+incr) and (y1<h+incr)]
    if not frame.kp2d:
      frame.kp2d = []
      frame.kp = []
      frame.avgd = -1.0
      print "No features"
      return

    self.vo.find_disparities(frame)

    # Convert to 3d keypoints and remove entries with invalid depths. I'm going to limit it to faces that are within a max dist as well.
    frame.kp = [kp for kp in frame.kp if 0.0<kp[2]]
    if not frame.kp:
      frame.kp2d = []
      frame.kp = []
      frame.avgd = -1.0
      print "no features"
      return
      
    frame.kp3d = [self.cam.pix2cam(kp[0],kp[1],kp[2]) for kp in frame.kp]
    to_remove = [kp3d[2]>self.max_face_dist or kp3d[2]<censize3d[2]-censize3d[3] or kp3d[2]>censize3d[2]+censize3d[3] for kp3d in frame.kp3d]
    # But only remove the entries if there are a few left. Otherwise, leave them all.
    if True: # sum(to_remove)<len(frame.kp)-2:
      #for k in [frame.kp, frame.kp3d]:
      frame.kp = [kp for (kp,remove) in zip(frame.kp,to_remove) if not remove]
      frame.kp3d = [kp for (kp,remove) in zip(frame.kp3d,to_remove) if not remove]
    if frame.kp:
      print len(frame.kp)
    else:
      print "0"
    # Enforce that kp2d and kp are the same. I would remove kp2d altogether except the stereo code uses it.
    frame.kp2d = [[kp[0],kp[1]] for kp in frame.kp]
    if frame.kp:
      frame.avgd = sum([kp[2] for kp in frame.kp])/len(frame.kp)
    else:
      frame.avgd = -1.0
 def get_features_new(self, frame, target_points, rect, extra_incr):
   
   if DEBUG:
     print "Features from rect ", rect
   
   full = Image.fromstring("L",frame.size,frame.rawdata)
   (x,y,w,h) = (int(rect[0]), int(rect[1]), int(rect[2]), int(rect[3]))
   innerbox = [max(0,x-extra_incr), max(0,y-extra_incr)]
   innerbox += [min(full.width, x+w+extra_incr), min(full.height, y+h+extra_incr)]
   incr = 16
   outerbox = [max(0,innerbox[0]-incr), max(0,innerbox[1]-incr)]
   outerbox += [min(full.width, innerbox[2]+incr), min(full.height, innerbox[3]+incr)] 
   subim = full.crop(outerbox)
   
   sd = starfeature.star_detector(outerbox[2]-outerbox[0]+1, outerbox[3]-outerbox[1]+1, self.num_scales, self.feature_detector.thresh, self.line_thresh)
   results = [ (x1,y1) for (x1,y1,s1,r1) in sd.detect(subim.tostring()) ]
   real_incr = [abs(i1-o1) for (i1,o1) in zip(innerbox,outerbox)]
   return [(x1-real_incr[0]+1,y1-real_incr[1]+1) for (x1,y1) in results if (real_incr[0]<x1) and (real_incr[1]<y1) and (x1<outerbox[2]-real_incr[2]) and (y1<outerbox[3]-real_incr[3])]
Exemplo n.º 4
0
    def frame(self, imarray):

        # No calibration params yet.
        if not self.vo:
            return

        if self.seq > 10000:
            sys.exit()
        if DEBUG:
            print ""
            print ""
            print "Frame ", self.seq
            print ""
            print ""

        im = imarray.images[1]
        im_r = imarray.images[0]
        if im.colorspace == "mono8":
            im_py = Image.fromstring("L", (im.width, im.height), im.data)
            im_r_py = Image.fromstring("L", (im_r.width, im_r.height),
                                       im_r.data)
        elif im.colorspace == "rgb24":
            use_color = True
            im_col_py = Image.fromstring("RGB", (im.width, im.height), im.data)
            im_py = im_col_py.convert("L")
            im_r_py = Image.fromstring("RGB", (im_r.width, im_r.height),
                                       im_r.data)
            im_r_py = im_r_py.convert("L")
        else:
            print "Unknown colorspace"
            return

        # Detect faces on the first frame
        if not self.current_keyframes:
            self.faces = self.p.detectAllFaces(im_py.tostring(), im.width,
                                               im.height, self.cascade_file,
                                               1.0, None, None, True)
            if DEBUG:
                print "Faces ", self.faces

        sparse_pred_list = []
        sparse_pred_list_2d = []
        old_rect = [0, 0, 0, 0]
        ia = SparseStereoFrame(im_py, im_r_py)
        ia.matches = []
        ia.desc_diffs = []
        ia.good_matches = []

        # Track each face
        iface = -1
        for face in self.faces:

            iface += 1

            (x, y, w, h) = copy.copy(self.faces[iface])
            if DEBUG:
                print "A face ", (x, y, w, h)

            (old_center, old_diff) = self.rect_to_center_diff((x, y, w, h))

            if self.face_centers_3d and iface < len(self.face_centers_3d):
                censize3d = list(copy.copy(self.face_centers_3d[iface]))
                censize3d.append(1.0 *
                                 self.real_face_sizes_3d[iface])  ###ZMULT
                self.get_features(ia, self.num_feats, (x, y, w, h), censize3d)
            else:
                self.get_features(ia, self.num_feats, (x, y, w, h),
                                  (0.0, 0.0, 0.0, 1000000.0))
            if not ia.kp2d:
                continue

            # First frame:
            if len(self.current_keyframes) < iface + 1:

                (cen, diff) = self.rect_to_center_diff((x, y, w, h))
                cen3d = self.cam.pix2cam(cen[0], cen[1], ia.avgd)
                ltf = self.cam.pix2cam(x, y, ia.avgd)
                rbf = self.cam.pix2cam(x + w, y + h, ia.avgd)
                fs3d = ((rbf[0] - ltf[0]) + (rbf[1] - ltf[1])) / 4.0

                # Check that the face is a reasonable size. If not, skip this face.
                if 2 * fs3d < self.min_real_face_size or 2 * fs3d > self.max_real_face_size or iface > 1:  #HACK: ONLY ALLOW ONE FACE
                    self.faces.pop(iface)
                    iface -= 1
                    continue

                if DESCRIPTOR == 'CALONDER':
                    self.vo.collect_descriptors(ia)
                elif DESCRIPTOR == 'SAD':
                    self.vo.collect_descriptors_sad(ia)
                else:
                    pass

                self.current_keyframes.append(0)
                self.keyframes.append(copy.copy(ia))

                self.feats_to_centers.append(
                    self.make_face_model(cen, diff, ia.kp2d))

                self.real_face_sizes_3d.append(copy.deepcopy(fs3d))
                self.feats_to_centers_3d.append(
                    self.make_face_model(cen3d, (fs3d, fs3d, fs3d), ia.kp3d))
                self.face_centers_3d.append(copy.deepcopy(cen3d))

                self.recent_good_frames.append(copy.copy(ia))
                self.recent_good_rects.append(copy.deepcopy([x, y, w, h]))
                self.recent_good_motion.append([0.0] * 3)  #dx,dy,dimfacesize
                self.recent_good_motion_3d.append([0.0] * 3)

                self.same_key_rgfs.append(True)

                # End first frame

            # Later frames
            else:
                if DESCRIPTOR == 'CALONDER':
                    self.vo.collect_descriptors(ia)
                elif DESCRIPTOR == 'SAD':
                    self.vo.collect_descriptors_sad(ia)
                else:
                    pass

                done_matching = False
                bad_frame = False
                while not done_matching:

                    # Try matching to the keyframe
                    keyframe = self.keyframes[self.current_keyframes[iface]]
                    temp_match = self.vo.temporal_match(ia,
                                                        keyframe,
                                                        want_distances=True)
                    ia.matches = [(m2, m1) for (m1, m2, m3) in temp_match]
                    ia.desc_diffs = [m3 for (m1, m2, m3) in temp_match]
                    print "Scores", ia.desc_diffs
                    #ia.matches = self.vo.temporal_match(keyframe,ia,want_distances=True)
                    #ia.desc_diffs = [(VO.sad(keyframe.descriptors[a], ia.descriptors[b])) for (a,b) in ia.matches]
                    ia.good_matches = [
                        s < self.desc_diff_thresh for s in ia.desc_diffs
                    ]

                    n_good_matches = len([
                        m for m in ia.desc_diffs if m < self.desc_diff_thresh
                    ])

                    # Not enough matches, get a new keyframe
                    if len(keyframe.kp) < 2 or n_good_matches < len(
                            keyframe.kp) / 2.0:

                        if DEBUG:
                            print "New keyframe"

                        # Make a new face model, either from a recent good frame, or from the current image
                        if not self.same_key_rgfs[iface]:

                            matched_z_list = [
                                tz for ((tx, ty, tz), is_good) in zip(
                                    self.recent_good_frames[iface].kp, self.
                                    recent_good_frames[iface].good_matches)
                                if is_good
                            ]
                            if len(matched_z_list) == 0:
                                matched_z_list = [
                                    tz
                                    for (tx, ty, tz
                                         ) in self.recent_good_frames[iface].kp
                                ]
                            avgd_goodmatches = sum(matched_z_list) / len(
                                matched_z_list)
                            avg3d_goodmatches = self.cam.pix2cam(
                                0.0, 0.0, avgd_goodmatches)
                            kp3d = [
                                self.cam.pix2cam(kp[0], kp[1], kp[2])
                                for kp in self.recent_good_frames[iface].kp
                            ]
                            print "kp ", self.recent_good_frames[iface].kp
                            print "kp3d ", kp3d
                            print avg3d_goodmatches
                            kp3d_for_model = [
                                this_kp3d for this_kp3d in kp3d
                                if math.fabs(this_kp3d[2] -
                                             avg3d_goodmatches[2]) < 2.0 *
                                self.real_face_sizes_3d[iface]
                            ]
                            kp_for_model = [
                                this_kp for (this_kp, this_kp3d) in zip(
                                    self.recent_good_frames[iface].kp, kp3d)
                                if math.fabs(this_kp3d[2] -
                                             avg3d_goodmatches[2]) < 2.0 *
                                self.real_face_sizes_3d[iface]
                            ]
                            # If you're not left with enough points, just take all of them and don't worry about the depth constraints.
                            if len(kp3d_for_model) < 2:
                                kp3d_for_model = kp3d
                                kp_for_model = copy.deepcopy(
                                    self.recent_good_frames[iface].kp)

                            (cen, diff) = self.rect_to_center_diff(
                                self.recent_good_rects[iface])
                            self.feats_to_centers[
                                iface] = self.make_face_model(
                                    cen, diff,
                                    [(kp0, kp1)
                                     for (kp0, kp1, kp2) in kp_for_model])

                            avgd = sum([
                                kp2 for (kp0, kp1, kp2) in kp_for_model
                            ]) / len(kp_for_model)
                            cen3d = self.cam.pix2cam(cen[0], cen[1], avgd)
                            self.feats_to_centers_3d[
                                iface] = self.make_face_model(
                                    cen3d,
                                    [self.real_face_sizes_3d[iface]] * 3,
                                    kp3d_for_model)

                            self.keyframes[
                                self.current_keyframes[iface]] = copy.copy(
                                    self.recent_good_frames[iface])
                            self.keyframes[self.current_keyframes[
                                iface]].kp = kp_for_model
                            self.keyframes[
                                self.current_keyframes[iface]].kp2d = [
                                    (k0, k1) for (k0, k1, k2) in kp_for_model
                                ]
                            self.keyframes[self.current_keyframes[
                                iface]].kp3d = kp3d_for_model
                            self.keyframes[
                                self.current_keyframes[iface]].matches = [
                                    (i, i) for i in range(len(kp_for_model))
                                ]
                            self.keyframes[
                                self.current_keyframes[iface]].good_matches = [
                                    True
                                ] * len(kp_for_model)
                            self.keyframes[self.current_keyframes[
                                iface]].desc_diffs = [0] * len(kp_for_model)

                            self.face_centers_3d[iface] = copy.deepcopy(cen3d)
                            # Not changing the face size

                            self.current_keyframes[
                                iface] = 0  #### HACK: ONLY ONE KEYFRAME!!!

                            self.same_key_rgfs[iface] = True
                            # Don't need to change the recent good frame yet.

                        else:

                            # Making a new model off of the current frame but with the predicted new position.
                            # HACK: The displacement computation assumes that the robot/head is still, fix this.
                            bad_frame = True
                            #done_matching = True
                            if DEBUG:
                                print "Bad frame ", self.seq, " for face ", iface

                            (cen, diff) = self.rect_to_center_diff(
                                self.faces[iface])
                            if DEBUG:
                                print "Motion for bad frame ", self.recent_good_motion[
                                    iface], self.recent_good_motion_3d[iface]
                            new_cen = [
                                cen[0] + self.recent_good_motion[iface][0],
                                cen[1] + self.recent_good_motion[iface][1]
                            ]
                            diff = [
                                diff[0] + self.recent_good_motion[iface][2],
                                diff[1] + self.recent_good_motion[iface][2]
                            ]

                            self.faces[iface] = (new_cen[0] - diff[0],
                                                 new_cen[1] - diff[1],
                                                 2.0 * diff[0], 2.0 * diff[1])
                            (x, y, w, h) = copy.deepcopy(self.faces[iface])

                            pred_cen_3d = [
                                o + n for (o, n) in zip(
                                    self.face_centers_3d[iface],
                                    self.recent_good_motion_3d[iface])
                            ]
                            pred_cen_3d.append(
                                1.0 *
                                self.real_face_sizes_3d[iface])  #### ZMULT
                            self.get_features(ia, self.num_feats, (x, y, w, h),
                                              pred_cen_3d)
                            if not ia.kp2d:
                                break

                            if DESCRIPTOR == 'CALONDER':
                                self.vo.collect_descriptors(ia)
                            elif DESCRIPTOR == 'SAD':
                                self.vo.collect_descriptors_sad(ia)
                            else:
                                pass

                            self.keyframes[
                                self.current_keyframes[iface]] = copy.copy(ia)
                            self.current_keyframes[iface] = 0
                            (cen, diff) = self.rect_to_center_diff(
                                self.faces[iface])
                            self.feats_to_centers[
                                iface] = self.make_face_model(
                                    cen, diff, ia.kp2d)
                            cen3d = self.cam.pix2cam(cen[0], cen[1], ia.avgd)
                            self.feats_to_centers_3d[
                                iface] = self.make_face_model(
                                    cen3d,
                                    [self.real_face_sizes_3d[iface]] * 3,
                                    ia.kp3d)
                            self.face_centers_3d[iface] = copy.deepcopy(cen3d)
                            self.same_key_rgfs[iface] = True

                    # Good matches, mark this frame as good
                    else:
                        done_matching = True

                    # END MATCHING

                # If we got enough matches for this frame, track.
                if ia.kp and ia.kp2d:

                    # Track
                    sparse_pred_list = []
                    sparse_pred_list_2d = []
                    probs = []
                    bandwidths = []
                    size_mult = 1.0
                    for ((match1, match2),
                         score) in zip(ia.matches, ia.desc_diffs):
                        if score < self.desc_diff_thresh:
                            kp3d = self.cam.pix2cam(ia.kp[match2][0],
                                                    ia.kp[match2][1],
                                                    ia.kp[match2][2])
                            sparse_pred_list.append(
                                (kp3d[0] +
                                 self.feats_to_centers_3d[iface][match1][0],
                                 kp3d[1] +
                                 self.feats_to_centers_3d[iface][match1][1],
                                 kp3d[2] +
                                 self.feats_to_centers_3d[iface][match1][2]))
                            sparse_pred_list_2d.append(
                                (ia.kp2d[match2][0] +
                                 self.feats_to_centers[iface][match1][0],
                                 ia.kp2d[match2][1] +
                                 self.feats_to_centers[iface][match1][1]))
                    probs = [1.0] * len(sparse_pred_list_2d)
                    bandwidths = [size_mult * self.real_face_sizes_3d[iface]
                                  ] * len(sparse_pred_list_2d)

                    if DEBUG:
                        print "Old center 3d ", self.face_centers_3d[iface]
                        print "Old center 2d ", (x + (w - 1) / 2.0,
                                                 y + (h - 1) / 2.0)

                    old_rect = self.faces[iface]
                    (old_center, old_diff) = self.rect_to_center_diff(old_rect)
                    new_center = self.mean_shift_sparse(
                        self.face_centers_3d[iface], sparse_pred_list, probs,
                        bandwidths, 10, 5.0)
                    new_center_2d = self.cam.cam2pix(new_center[0],
                                                     new_center[1],
                                                     new_center[2])
                    ltf = self.cam.cam2pix(
                        new_center[0] - self.real_face_sizes_3d[iface],
                        new_center[1] - self.real_face_sizes_3d[iface],
                        new_center[2])
                    rbf = self.cam.cam2pix(
                        new_center[0] + self.real_face_sizes_3d[iface],
                        new_center[1] + self.real_face_sizes_3d[iface],
                        new_center[2])
                    w = rbf[0] - ltf[0]
                    h = rbf[1] - ltf[1]

                    if DEBUG:
                        print "new center 3d ", new_center
                        print "new_center 2d ", new_center_2d

                    (nx, ny, nw, nh) = (new_center_2d[0] - (w - 1) / 2.0,
                                        new_center_2d[1] - (h - 1) / 2.0, w, h)

                    # Force the window back into the image.
                    dx = max(0, 0 - nx) + min(0, im.width - nx + nw)
                    dy = max(0, 0 - ny) + min(0, im.height - ny + nh)
                    nx += dx
                    ny += dy

                    self.faces[iface] = [nx, ny, nw, nh]
                    self.recent_good_rects[iface] = [nx, ny, nw, nh]
                    if bad_frame:
                        self.recent_good_motion[
                            iface] = self.recent_good_motion[iface]
                        self.recent_good_motion_3d[
                            iface] = self.recent_good_motion_3d[iface]
                    else:
                        self.recent_good_motion[iface] = [
                            new_center_2d[0] - old_center[0],
                            new_center_2d[1] - old_center[1],
                            ((nw - 1.0) / 2.0) - old_diff[0]
                        ]
                        self.recent_good_motion_3d[iface] = [
                            new_center[i] - self.face_centers_3d[iface][i]
                            for i in range(len(new_center))
                        ]
                    self.face_centers_3d[iface] = copy.deepcopy(new_center)
                    self.recent_good_frames[iface] = copy.copy(ia)
                    self.same_key_rgfs[iface] = False

                    if DEBUG:
                        print "motion ", self.recent_good_motion[iface]
                        print "face 2d ", self.faces[iface]
                        print "face center 3d ", self.face_centers_3d[iface]

                    # Output the location of this face center in the 3D camera frame (of the left camera), and rotate
                    # the coordinates to match the robot's idea of the 3D camera frame.
                    center_uvd = (nx + (nw - 1) / 2.0, ny + (nh - 1) / 2.0,
                                  (numpy.average(ia.kp, 0))[2])
                    center_camXYZ = self.cam.pix2cam(center_uvd[0],
                                                     center_uvd[1],
                                                     center_uvd[2])
                    center_robXYZ = (center_camXYZ[2], -center_camXYZ[0],
                                     -center_camXYZ[1])

                    ########### PUBLISH the face center for the head controller to track. ########
                    if not self.usebag:
                        stamped_point = PointStamped()
                        (stamped_point.point.x, stamped_point.point.y,
                         stamped_point.point.z) = center_robXYZ
                        stamped_point.header.frame_id = "stereo"
                        stamped_point.header.stamp = imarray.header.stamp
                        self.pub.publish(stamped_point)

                # End later frames

            ############ DRAWING ################
            if SAVE_PICS:

                if not self.keyframes or len(self.keyframes) <= iface:
                    bigim_py = im_py
                    draw = ImageDraw.Draw(bigim_py)
                else:
                    key_im = self.keyframes[self.current_keyframes[iface]]
                    keyim_py = Image.fromstring("L", key_im.size,
                                                key_im.rawdata)
                    bigim_py = Image.new(
                        "RGB", (im_py.size[0] + key_im.size[0], im_py.size[1]))
                    bigim_py.paste(keyim_py.convert("RGB"), (0, 0))
                    bigim_py.paste(im_py, (key_im.size[0] + 1, 0))
                    draw = ImageDraw.Draw(bigim_py)

                    (x, y, w, h) = self.faces[iface]
                    draw.rectangle((x, y, x + w, y + h), outline=(0, 255, 0))
                    draw.rectangle(
                        (x + key_im.size[0], y, x + w + key_im.size[0], y + h),
                        outline=(0, 255, 0))
                    (x, y, w, h) = old_rect
                    draw.rectangle((x, y, x + w, y + h),
                                   outline=(255, 255, 255))
                    draw.rectangle(
                        (x + key_im.size[0], y, x + w + key_im.size[0], y + h),
                        outline=(255, 255, 255))

                    mstart = old_center
                    mend = (old_center[0] + self.recent_good_motion[iface][0],
                            old_center[1] + self.recent_good_motion[iface][1])
                    draw.rectangle((mstart[0] - 1, mstart[1] - 1,
                                    mstart[0] + 1, mstart[1] + 1),
                                   outline=(255, 255, 255))
                    draw.rectangle(
                        (mend[0] - 1, mend[1] - 1, mend[0] + 1, mend[1] + 1),
                        outline=(0, 255, 0))
                    draw.line(mstart + mend, fill=(255, 255, 255))

                    for (x, y) in key_im.kp2d:
                        draw_x(draw, (x, y), (1, 1), (255, 0, 0))
                    for (x, y) in ia.kp2d:
                        draw_x(draw, (x + key_im.size[0], y), (1, 1),
                               (255, 0, 0))

                    if self.seq > 0:

                        for (x, y) in sparse_pred_list_2d:
                            draw_x(draw, (x, y), (1, 1), (0, 0, 255))
                            draw_x(draw, (x + key_im.size[0], y), (1, 1),
                                   (0, 0, 255))

                        if ia.matches:
                            for ((m1, m2),
                                 score) in zip(ia.matches, ia.desc_diffs):
                                if score > self.desc_diff_thresh:
                                    color = (255, 0, 0)
                                else:
                                    color = (0, 255, 0)
                                draw.line(
                                    (key_im.kp2d[m1][0], key_im.kp2d[m1][1],
                                     ia.kp2d[m2][0] + key_im.size[0],
                                     ia.kp2d[m2][1]),
                                    fill=color)

                bigim_py.save("/tmp/tiff/feats%06d_%03d.tiff" %
                              (self.seq, iface))
                #END DRAWING

            # END FACE LOOP

        self.seq += 1
Exemplo n.º 5
0
    def get_features(self, frame, target_points, rect2d, censize3d):

        if DEBUG:
            print "Features from rect ", rect2d

        # Clear out all of the match info since it's not valid anymore.
        frame.matches = []
        frame.desc_diffs = []
        frame.good_matches = []

        # Extract 2d keypoints and get their disparities
        full = Image.fromstring("L", frame.size, frame.rawdata)
        (x, y, w, h) = (int(rect2d[0]), int(rect2d[1]), int(rect2d[2]),
                        int(rect2d[3]))
        incr = 16
        subim = full.crop((x - incr, y - incr, x + w + incr, y + h + incr))

        sd = starfeature.star_detector(w + 2 * incr, h + 2 * incr,
                                       self.num_scales,
                                       self.feature_detector.thresh,
                                       self.line_thresh)
        results = [(x1, y1)
                   for (x1, y1, s1, r1) in sd.detect(subim.tostring())]
        frame.kp2d = [(x - incr + x1, y - incr + y1) for (x1, y1) in results
                      if (incr < x1) and (incr < y1) and (x1 < w + incr) and (
                          y1 < h + incr)]
        if not frame.kp2d:
            frame.kp2d = []
            frame.kp = []
            frame.avgd = -1.0
            print "No features"
            return

        self.vo.find_disparities(frame)

        # Convert to 3d keypoints and remove entries with invalid depths. I'm going to limit it to faces that are within a max dist as well.
        frame.kp = [kp for kp in frame.kp if 0.0 < kp[2]]
        if not frame.kp:
            frame.kp2d = []
            frame.kp = []
            frame.avgd = -1.0
            print "no features"
            return

        frame.kp3d = [self.cam.pix2cam(kp[0], kp[1], kp[2]) for kp in frame.kp]
        to_remove = [
            kp3d[2] > self.max_face_dist
            or kp3d[2] < censize3d[2] - censize3d[3]
            or kp3d[2] > censize3d[2] + censize3d[3] for kp3d in frame.kp3d
        ]
        # But only remove the entries if there are a few left. Otherwise, leave them all.
        if True:  # sum(to_remove)<len(frame.kp)-2:
            #for k in [frame.kp, frame.kp3d]:
            frame.kp = [
                kp for (kp, remove) in zip(frame.kp, to_remove) if not remove
            ]
            frame.kp3d = [
                kp for (kp, remove) in zip(frame.kp3d, to_remove) if not remove
            ]
        if frame.kp:
            print len(frame.kp)
        else:
            print "0"
        # Enforce that kp2d and kp are the same. I would remove kp2d altogether except the stereo code uses it.
        frame.kp2d = [[kp[0], kp[1]] for kp in frame.kp]
        if frame.kp:
            frame.avgd = sum([kp[2] for kp in frame.kp]) / len(frame.kp)
        else:
            frame.avgd = -1.0
    def frame(self, imarray):

        # No calibration params yet.
        if not self.vo:
            return

        if self.seq > 10000:
            sys.exit()
        if DEBUG:
            print ""
            print ""
            print "Frame ", self.seq
            print ""
            print ""

        im = imarray.images[1]
        im_r = imarray.images[0]
        if im.colorspace == "mono8":
            im_py = Image.fromstring("L", (im.width, im.height), im.data)
            im_r_py = Image.fromstring("L", (im_r.width, im_r.height),
                                       im_r.data)
        elif im.colorspace == "rgb24":
            use_color = True
            im_col_py = Image.fromstring("RGB", (im.width, im.height), im.data)
            im_py = im_col_py.convert("L")
            im_r_py = Image.fromstring("RGB", (im_r.width, im_r.height),
                                       im_r.data)
            im_r_py = im_r_py.convert("L")
        else:
            print "Unknown colorspace"
            return

        # Detect faces on the first frame
        if not self.current_keyframes:
            self.faces = self.p.detectAllFaces(im_py.tostring(), im.width,
                                               im.height, self.cascade_file,
                                               1.0, None, None, True)
            if DEBUG:
                print "Faces ", self.faces

        sparse_pred_list = []
        sparse_pred_list_2d = []
        old_rect = [0, 0, 0, 0]
        ia = SparseStereoFrame(im_py, im_r_py)
        ia.matches = []
        ia.desc_diffs = []
        ia.good_matches = []

        # Track each face
        iface = -1
        for face in self.faces:

            iface += 1

            (x, y, w, h) = copy.copy(self.faces[iface])
            if DEBUG:
                print "A face ", (x, y, w, h)

            (old_center, old_diff) = self.rect_to_center_diff((x, y, w, h))

            if self.face_centers_3d and iface < len(self.face_centers_3d):
                censize3d = list(copy.copy(self.face_centers_3d[iface]))
                censize3d.append(2.0 *
                                 self.real_face_sizes_3d[iface])  ###ZMULT
                self.get_features(ia, self.num_feats, (x, y, w, h), censize3d)
            else:
                self.get_features(ia, self.num_feats, (x, y, w, h),
                                  (0.0, 0.0, 0.0, 1000000.0))
            if not ia.kp2d:
                continue

            # First frame:
            if len(self.current_keyframes) < iface + 1:

                (cen, diff) = self.rect_to_center_diff((x, y, w, h))
                cen3d = self.cam.pix2cam(cen[0], cen[1], ia.avgd)
                cen3d = list(cen3d)
                ltf = self.cam.pix2cam(x, y, ia.avgd)
                rbf = self.cam.pix2cam(x + w, y + h, ia.avgd)
                fs3d = ((rbf[0] - ltf[0]) + (rbf[1] - ltf[1])) / 4.0
                # This assumes that we're tracking the face plane center, not the center of the head sphere.
                # If you want to track the center of the sphere instead, do: cen3d[2] += fs3d

                # Check that the face is a reasonable size. If not, skip this face.
                if 2 * fs3d < self.min_real_face_size or 2 * fs3d > self.max_real_face_size or iface > 1:  #HACK: ONLY ALLOW ONE FACE
                    self.faces.pop(iface)
                    iface -= 1
                    continue

                if DESCRIPTOR == 'CALONDER':
                    self.vo.collect_descriptors(ia)
                elif DESCRIPTOR == 'SAD':
                    self.vo.collect_descriptors_sad(ia)
                else:
                    pass

                self.current_keyframes.append(0)
                self.keyframes.append(copy.copy(ia))

                self.feats_to_centers.append(
                    self.make_face_model(cen, diff, ia.kp2d))

                self.real_face_sizes_3d.append(copy.deepcopy(fs3d))
                self.feats_to_centers_3d.append(
                    self.make_face_model(cen3d, (fs3d, fs3d, fs3d), ia.kp3d))
                self.face_centers_3d.append(copy.deepcopy(cen3d))

                self.recent_good_frames.append(copy.copy(ia))
                self.recent_good_rects.append(copy.deepcopy([x, y, w, h]))
                self.recent_good_centers_3d.append(copy.deepcopy(cen3d))
                self.recent_good_motion.append([0.0] * 3)  #dx,dy,dimfacesize
                self.recent_good_motion_3d.append([0.0] * 3)

                self.same_key_rgfs.append(True)

                if DEBUG:
                    print "cen2d", cen
                    print "cen3d", self.face_centers_3d[iface]

                # End first frame

            # Later frames
            else:
                if DESCRIPTOR == 'CALONDER':
                    self.vo.collect_descriptors(ia)
                elif DESCRIPTOR == 'SAD':
                    self.vo.collect_descriptors_sad(ia)
                else:
                    pass

                done_matching = False
                bad_frame = False
                while not done_matching:

                    # Try matching to the keyframe
                    keyframe = self.keyframes[self.current_keyframes[iface]]
                    temp_match = self.vo.temporal_match(ia,
                                                        keyframe,
                                                        want_distances=True)
                    ia.matches = [(m2, m1) for (m1, m2, m3) in temp_match]
                    ia.desc_diffs = [m3 for (m1, m2, m3) in temp_match]
                    print "temp matches", temp_match
                    ia.good_matches = [
                        s < self.desc_diff_thresh for s in ia.desc_diffs
                    ]

                    n_good_matches = len([
                        m for m in ia.desc_diffs if m < self.desc_diff_thresh
                    ])

                    if DEBUG:
                        if len(keyframe.kp) < 2:
                            print "Keyframe has less than 2 kps"
                        if n_good_matches < len(keyframe.kp) / 2.0:
                            print "ngoodmatches, len key.kp, len key.kp/2", n_good_matches, len(
                                keyframe.kp), len(keyframe.kp) / 2.0

                    # Not enough matches, get a new keyframe
                    if len(keyframe.kp) < 2 or n_good_matches < len(
                            keyframe.kp) / 2.0:

                        if DEBUG:
                            print "New keyframe"

                        # Make a new face model, either from a recent good frame, or from the current image
                        if not self.same_key_rgfs[iface]:

                            if DEBUG:
                                print "centers at beginning of new keyframe"
                                print "cen2d", [
                                    self.faces[iface][0] +
                                    self.faces[iface][2] / 2.0,
                                    self.faces[iface][1] +
                                    self.faces[iface][3] / 2.0
                                ]
                                print "cen3d", self.face_centers_3d[iface]

                            matched_z_list = [
                                kp3d[2] for (kp3d, is_good) in zip(
                                    self.recent_good_frames[iface].kp3d, self.
                                    recent_good_frames[iface].good_matches)
                                if is_good
                            ]
                            if len(matched_z_list) == 0:
                                matched_z_list = [
                                    kp3d[2] for kp3d in
                                    self.recent_good_frames[iface].kp3d
                                ]
                            avgz_goodmatches = sum(matched_z_list) / len(
                                matched_z_list)
                            tokeep = [
                                math.fabs(
                                    self.recent_good_frames[iface].kp3d[i][2] -
                                    avgz_goodmatches) <
                                2.0 * self.real_face_sizes_3d[iface]
                                for i in range(
                                    len(self.recent_good_frames[iface].kp3d))
                            ]
                            kp3d_for_model = [
                                kp3d for (kp3d, tk) in zip(
                                    self.recent_good_frames[iface].kp3d,
                                    tokeep) if tk
                            ]
                            kp_for_model = [
                                kp for (kp, tk) in zip(
                                    self.recent_good_frames[iface].kp, tokeep)
                                if tk
                            ]
                            # If you're not left with enough points, just take all of them and don't worry about the depth constraints.
                            if len(kp3d_for_model) < 2:
                                kp3d_for_model = copy.deepcopy(
                                    self.recent_good_frames[iface].kp3d)
                                kp_for_model = copy.deepcopy(
                                    self.recent_good_frames[iface].kp)

                            (cen, diff) = self.rect_to_center_diff(
                                self.recent_good_rects[iface])
                            self.feats_to_centers[
                                iface] = self.make_face_model(
                                    cen, diff,
                                    [(kp0, kp1)
                                     for (kp0, kp1, kp2) in kp_for_model])

                            cen3d = self.recent_good_centers_3d[iface]
                            self.feats_to_centers_3d[
                                iface] = self.make_face_model(
                                    cen3d,
                                    [self.real_face_sizes_3d[iface]] * 3,
                                    kp3d_for_model)

                            self.keyframes[
                                self.current_keyframes[iface]] = copy.copy(
                                    self.recent_good_frames[iface])
                            self.keyframes[self.current_keyframes[
                                iface]].kp = kp_for_model
                            self.keyframes[
                                self.current_keyframes[iface]].kp2d = [
                                    (k0, k1) for (k0, k1, k2) in kp_for_model
                                ]
                            self.keyframes[self.current_keyframes[
                                iface]].kp3d = kp3d_for_model
                            self.keyframes[
                                self.current_keyframes[iface]].matches = [
                                    (i, i) for i in range(len(kp_for_model))
                                ]
                            self.keyframes[
                                self.current_keyframes[iface]].good_matches = [
                                    True
                                ] * len(kp_for_model)
                            self.keyframes[self.current_keyframes[
                                iface]].desc_diffs = [0] * len(kp_for_model)

                            if DESCRIPTOR == 'CALONDER':
                                self.vo.collect_descriptors(self.keyframes[
                                    self.current_keyframes[iface]])
                            elif DESCRIPTOR == 'SAD':
                                self.vo.collect_descriptors_sad(self.keyframes[
                                    self.current_keyframes[iface]])
                            else:
                                pass

                            self.face_centers_3d[iface] = copy.deepcopy(cen3d)
                            # Not changing the face size

                            self.current_keyframes[
                                iface] = 0  #### HACK: ONLY ONE KEYFRAME!!!

                            self.same_key_rgfs[iface] = True
                            # Don't need to change the recent good frame yet.

                            if DEBUG:
                                print "centers at end of new keyframe"
                                print "cen2d", [
                                    self.faces[iface][0] +
                                    self.faces[iface][2] / 2.0,
                                    self.faces[iface][1] +
                                    self.faces[iface][3] / 2.0
                                ]
                                print "cen3d", self.face_centers_3d[iface]

                        else:

                            # Making a new model off of the current frame but with the predicted new position.
                            # HACK: The displacement computation assumes that the robot/head is still, fix this.
                            bad_frame = True
                            #done_matching = True
                            if DEBUG:
                                print "Bad frame ", self.seq, " for face ", iface

                            (cen, diff) = self.rect_to_center_diff(
                                self.faces[iface])
                            if DEBUG:
                                print "Motion for bad frame ", self.recent_good_motion[
                                    iface], self.recent_good_motion_3d[iface]
                            new_cen = [
                                cen[0] + self.recent_good_motion[iface][0],
                                cen[1] + self.recent_good_motion[iface][1]
                            ]
                            diff = [
                                diff[0] + self.recent_good_motion[iface][2],
                                diff[1] + self.recent_good_motion[iface][2]
                            ]

                            self.faces[iface] = (new_cen[0] - diff[0],
                                                 new_cen[1] - diff[1],
                                                 2.0 * diff[0], 2.0 * diff[1])
                            (x, y, w, h) = copy.deepcopy(self.faces[iface])

                            pred_cen_3d = [
                                o + n for (o, n) in zip(
                                    self.face_centers_3d[iface],
                                    self.recent_good_motion_3d[iface])
                            ]
                            pred_cen_3d.append(
                                2.0 *
                                self.real_face_sizes_3d[iface])  #### ZMULT
                            self.get_features(ia, self.num_feats, (x, y, w, h),
                                              pred_cen_3d)
                            if not ia.kp2d:
                                break

                            if DESCRIPTOR == 'CALONDER':
                                self.vo.collect_descriptors(ia)
                            elif DESCRIPTOR == 'SAD':
                                self.vo.collect_descriptors_sad(ia)
                            else:
                                pass

                            self.keyframes[
                                self.current_keyframes[iface]] = copy.copy(ia)
                            self.current_keyframes[iface] = 0
                            (cen, diff) = self.rect_to_center_diff(
                                self.faces[iface])
                            self.feats_to_centers[
                                iface] = self.make_face_model(
                                    cen, diff, ia.kp2d)
                            self.feats_to_centers_3d[
                                iface] = self.make_face_model([
                                    pred_cen_3d[0], pred_cen_3d[1],
                                    pred_cen_3d[2]
                                ], [self.real_face_sizes_3d[iface]] * 3,
                                                              ia.kp3d)
                            self.face_centers_3d[iface] = copy.deepcopy(
                                pred_cen_3d)
                            self.same_key_rgfs[iface] = True

                    # Good matches, mark this frame as good
                    else:
                        done_matching = True

                    # END MATCHING

                # If we got enough matches for this frame, track.
                if ia.kp and ia.kp2d:

                    # Track
                    sparse_pred_list = []
                    sparse_pred_list_2d = []
                    probs = []
                    bandwidths = []
                    size_mult = 0.05  #1.0

                    for ((match1, match2),
                         score) in zip(ia.matches, ia.desc_diffs):
                        if score < self.desc_diff_thresh:
                            sparse_pred_list.append([
                                ia.kp3d[match2][i] +
                                self.feats_to_centers_3d[iface][match1][i]
                                for i in range(3)
                            ])
                            sparse_pred_list_2d.append([
                                ia.kp2d[match2][i] +
                                self.feats_to_centers[iface][match1][i]
                                for i in range(2)
                            ])
                            #probs.append(score)
                    probs = [1.0] * len(
                        sparse_pred_list_2d
                    )  # Ignore actual match scores. Uncomment line above to use the match scores.
                    bandwidths = [size_mult * self.real_face_sizes_3d[iface]
                                  ] * len(sparse_pred_list_2d)

                    (old_center,
                     old_diff) = self.rect_to_center_diff(self.faces[iface])

                    if DEBUG:
                        print "Old center 3d ", self.face_centers_3d[iface]
                        print "Old center 2d ", old_center

                    old_rect = self.faces[iface]  # For display only

                    new_center = self.mean_shift_sparse(
                        self.face_centers_3d[iface][0:3], sparse_pred_list,
                        probs, bandwidths, 10, 1.0)
                    new_center_2d = self.cam.cam2pix(new_center[0],
                                                     new_center[1],
                                                     new_center[2])
                    # The above line assumes that we're tracking the face plane center, not the center of the head sphere.
                    # If you want to track the center of the sphere instead, subtract self.real_face_sizes[iface] from the z-coord.
                    ltf = self.cam.cam2pix(
                        new_center[0] - self.real_face_sizes_3d[iface],
                        new_center[1] - self.real_face_sizes_3d[iface],
                        new_center[2])
                    rbf = self.cam.cam2pix(
                        new_center[0] + self.real_face_sizes_3d[iface],
                        new_center[1] + self.real_face_sizes_3d[iface],
                        new_center[2])
                    w = rbf[0] - ltf[0]
                    h = rbf[1] - ltf[1]

                    if DEBUG:
                        print "new center 3d ", new_center
                        print "new_center 2d ", new_center_2d

                    (nx, ny, nw, nh) = (new_center_2d[0] - (w - 1) / 2.0,
                                        new_center_2d[1] - (h - 1) / 2.0, w, h)

                    # Force the window back into the image.
                    nx += max(0, 0 - nx) + min(0, im.width - nx + nw)
                    ny += max(0, 0 - ny) + min(0, im.height - ny + nh)

                    self.faces[iface] = [nx, ny, nw, nh]
                    self.recent_good_rects[iface] = [nx, ny, nw, nh]
                    self.recent_good_centers_3d[iface] = copy.deepcopy(
                        new_center)
                    if bad_frame:
                        self.recent_good_motion[
                            iface] = self.recent_good_motion[iface]
                        self.recent_good_motion_3d[
                            iface] = self.recent_good_motion_3d[iface]
                    else:
                        self.recent_good_motion[iface] = [
                            new_center_2d[0] - old_center[0],
                            new_center_2d[1] - old_center[1],
                            ((nw - 1.0) / 2.0) - old_diff[0]
                        ]
                        self.recent_good_motion_3d[iface] = [
                            new_center[i] - self.face_centers_3d[iface][i]
                            for i in range(len(new_center))
                        ]
                    self.face_centers_3d[iface] = copy.deepcopy(new_center)
                    self.recent_good_frames[iface] = copy.copy(ia)
                    self.same_key_rgfs[iface] = False

                    if DEBUG:
                        print "motion ", self.recent_good_motion[
                            iface], self.recent_good_motion_3d[iface]
                        print "face 2d ", self.faces[iface]
                        print "face center 3d ", self.face_centers_3d[iface]

                    # Output the location of this face center in the 3D camera frame (of the left camera), and rotate
                    # the coordinates to match the robot's idea of the 3D camera frame.
                    center_uvd = (nx + (nw - 1) / 2.0, ny + (nh - 1) / 2.0,
                                  (numpy.average(ia.kp, 0))[2])
                    center_camXYZ = self.cam.pix2cam(center_uvd[0],
                                                     center_uvd[1],
                                                     center_uvd[2])
                    center_robXYZ = (center_camXYZ[2], -center_camXYZ[0],
                                     -center_camXYZ[1])

                    ########### PUBLISH the face center for the head controller to track. ########
                    if not self.usebag:
                        #stamped_point = PointStamped()
                        #(stamped_point.point.x, stamped_point.point.y, stamped_point.point.z) = center_robXYZ
                        #stamped_point.header.frame_id = "stereo"
                        #stamped_point.header.stamp = imarray.header.stamp
                        #self.pub.publish(stamped_point)
                        pm = PositionMeasurement()
                        pm.header.stamp = imarray.header.stamp
                        pm.name = "stereo_face_feature_tracker"
                        pm.object_id = -1
                        (pm.pos.x, pm.pos.y, pm.pos.z) = center_robXYZ
                        pm.header.frame_id = "stereo_link"
                        pm.reliability = 0.5
                        pm.initialization = 0
                        #pm.covariance
                        self.pub.publish(pm)

                # End later frames

            ############ DRAWING ################
            if SAVE_PICS:

                if not self.keyframes or len(self.keyframes) <= iface:
                    bigim_py = im_py
                    draw = ImageDraw.Draw(bigim_py)
                else:
                    key_im = self.keyframes[self.current_keyframes[iface]]
                    keyim_py = Image.fromstring("L", key_im.size,
                                                key_im.rawdata)
                    bigim_py = Image.new(
                        "RGB", (im_py.size[0] + key_im.size[0], im_py.size[1]))
                    bigim_py.paste(keyim_py.convert("RGB"), (0, 0))
                    bigim_py.paste(im_py, (key_im.size[0] + 1, 0))
                    draw = ImageDraw.Draw(bigim_py)

                    (x, y, w, h) = self.faces[iface]
                    draw.rectangle((x, y, x + w, y + h), outline=(0, 255, 0))
                    draw.rectangle(
                        (x + key_im.size[0], y, x + w + key_im.size[0], y + h),
                        outline=(0, 255, 0))
                    (x, y, w, h) = old_rect
                    draw.rectangle((x, y, x + w, y + h),
                                   outline=(255, 255, 255))
                    draw.rectangle(
                        (x + key_im.size[0], y, x + w + key_im.size[0], y + h),
                        outline=(255, 255, 255))

                    mstart = old_center
                    mend = (old_center[0] + self.recent_good_motion[iface][0],
                            old_center[1] + self.recent_good_motion[iface][1])
                    draw.rectangle((mstart[0] - 1, mstart[1] - 1,
                                    mstart[0] + 1, mstart[1] + 1),
                                   outline=(255, 255, 255))
                    draw.rectangle(
                        (mend[0] - 1, mend[1] - 1, mend[0] + 1, mend[1] + 1),
                        outline=(0, 255, 0))
                    draw.line(mstart + mend, fill=(255, 255, 255))

                    for (x, y) in key_im.kp2d:
                        draw_x(draw, (x, y), (1, 1), (255, 0, 0))
                    for (x, y) in ia.kp2d:
                        draw_x(draw, (x + key_im.size[0], y), (1, 1),
                               (255, 0, 0))

                    if self.seq > 0:

                        if ia.matches:
                            for ((m1, m2),
                                 score) in zip(ia.matches, ia.desc_diffs):
                                if score > self.desc_diff_thresh:
                                    color = (255, 0, 0)
                                else:
                                    color = (0, 255, 0)
                                draw.line(
                                    (key_im.kp2d[m1][0], key_im.kp2d[m1][1],
                                     ia.kp2d[m2][0] + key_im.size[0],
                                     ia.kp2d[m2][1]),
                                    fill=color)

                        for (i, (u, v)) in enumerate(sparse_pred_list_2d):
                            bscale = min(1, probs[i] / 0.01)
                            draw_x(draw, (u, v), (1, 1),
                                   (128.0 + 128.0 * bscale,
                                    128.0 + 128.0 * bscale,
                                    (1.0 - bscale) * 255.0))
                            draw_x(draw, (u + key_im.size[0], v), (1, 1),
                                   (128.0 + 128.0 * bscale,
                                    128.0 + 128.0 * bscale,
                                    (1.0 - bscale) * 255.0))

                    ####### PUBLISH 3d visualization point cloud ###################
                    if self.usebag and self.visualize:
                        cloud = PointCloud()
                        cloud.header.frame_id = "stereo"
                        cloud.header.stamp = imarray.header.stamp
                        cloud.pts = []
                        cloud.pts.append(Point())
                        (cloud.pts[0].x, cloud.pts[0].y,
                         cloud.pts[0].z) = self.face_centers_3d[iface][:3]
                        for (i, kp3d) in enumerate(ia.kp3d):
                            cloud.pts.append(Point())
                            (cloud.pts[i].x, cloud.pts[i].y,
                             cloud.pts[i].z) = kp3d

                        lp = len(cloud.pts)
                        if self.seq > 0:
                            for (i, (u, v)) in enumerate(sparse_pred_list):
                                cloud.pts[lp + i].append(Point())
                                (cloud.pts[lp + i].x, cloud.pts[lp + i].y,
                                 cloud.pts[lp + i].z) = sparse_pred_list[i][:3]

                        self.pub.publish(cloud)

                bigim_py.save("/tmp/tiff/feats%06d_%03d.tiff" %
                              (self.seq, iface))
                #END DRAWING

            # END FACE LOOP

        self.seq += 1
  def frame(self, imarray):

    # No calibration params yet.
    if not self.vo:
      return

    if self.seq > 10000:
      sys.exit()
    if DEBUG:
      print ""
      print ""
      print "Frame ", self.seq
      print ""
      print ""


    im = imarray.images[1]
    im_r = imarray.images[0]
    if im.colorspace == "mono8":
      im_py = Image.fromstring("L", (im.width, im.height), im.data)
      im_r_py = Image.fromstring("L", (im_r.width, im_r.height), im_r.data)
    elif im.colorspace == "rgb24":
      use_color = True
      im_col_py = Image.fromstring("RGB", (im.width, im.height), im.data)
      im_py = im_col_py.convert("L")
      im_r_py = Image.fromstring("RGB", (im_r.width, im_r.height), im_r.data)
      im_r_py = im_r_py.convert("L")
    else :
      print "Unknown colorspace"
      return
    

    # Detect faces on the first frame
    if not self.current_keyframes :
      self.faces = self.p.detectAllFaces(im_py.tostring(), im.width, im.height, self.cascade_file, 1.0, None, None, True) 
      if DEBUG:
        print "Faces ", self.faces
      
    sparse_pred_list = []
    sparse_pred_list_2d = []
    old_rect = [0,0,0,0]
    ia = SparseStereoFrame(im_py,im_r_py)
    ia.matches = []
    ia.desc_diffs = []
    ia.good_matches = []

    # Track each face
    iface = -1
    for face in self.faces:
      
      iface += 1

      (x,y,w,h) = copy.copy(self.faces[iface])
      if DEBUG:
        print "A face ", (x,y,w,h)

      (old_center, old_diff) = self.rect_to_center_diff((x,y,w,h)) 
      
      if self.face_centers_3d and iface<len(self.face_centers_3d):
        censize3d = list(copy.copy(self.face_centers_3d[iface]))
        censize3d.append(2.0*self.real_face_sizes_3d[iface]) ###ZMULT
        self.get_features(ia, self.num_feats, (x,y,w,h), censize3d)
      else:
        self.get_features(ia, self.num_feats, (x, y, w, h), (0.0,0.0,0.0,1000000.0))
      if not ia.kp2d:
        continue

      # First frame:
      if len(self.current_keyframes) < iface+1:

        (cen,diff) = self.rect_to_center_diff((x,y,w,h))
        cen3d = self.cam.pix2cam(cen[0],cen[1],ia.avgd)
        cen3d = list(cen3d)
        ltf = self.cam.pix2cam(x,y,ia.avgd)
        rbf = self.cam.pix2cam(x+w,y+h,ia.avgd)
        fs3d = ( (rbf[0]-ltf[0]) + (rbf[1]-ltf[1]) )/4.0
        # This assumes that we're tracking the face plane center, not the center of the head sphere. 
        # If you want to track the center of the sphere instead, do: cen3d[2] += fs3d

        # Check that the face is a reasonable size. If not, skip this face.
        if 2*fs3d < self.min_real_face_size or 2*fs3d > self.max_real_face_size or iface > 1: #HACK: ONLY ALLOW ONE FACE
          self.faces.pop(iface)
          iface -= 1
          continue

        if DESCRIPTOR=='CALONDER':
          self.vo.collect_descriptors(ia)
        elif DESCRIPTOR=='SAD':
          self.vo.collect_descriptors_sad(ia)
        else:
          pass

        self.current_keyframes.append(0)
        self.keyframes.append(copy.copy(ia))

        self.feats_to_centers.append(self.make_face_model( cen, diff, ia.kp2d ))

        self.real_face_sizes_3d.append( copy.deepcopy(fs3d) )
        self.feats_to_centers_3d.append( self.make_face_model( cen3d, (fs3d,fs3d,fs3d), ia.kp3d) )
        self.face_centers_3d.append( copy.deepcopy(cen3d) )

        self.recent_good_frames.append(copy.copy(ia))
        self.recent_good_rects.append(copy.deepcopy([x,y,w,h]))
        self.recent_good_centers_3d.append(copy.deepcopy(cen3d))
        self.recent_good_motion.append([0.0]*3) #dx,dy,dimfacesize
        self.recent_good_motion_3d.append([0.0]*3)

        self.same_key_rgfs.append(True)
        
        if DEBUG:
          print "cen2d", cen
          print "cen3d", self.face_centers_3d[iface]

        # End first frame

      # Later frames
      else :
        if DESCRIPTOR=='CALONDER':
          self.vo.collect_descriptors(ia)
        elif DESCRIPTOR=='SAD':
          self.vo.collect_descriptors_sad(ia)
        else:
          pass


        done_matching = False
        bad_frame = False
        while not done_matching:

          # Try matching to the keyframe
          keyframe = self.keyframes[self.current_keyframes[iface]]
          temp_match = self.vo.temporal_match(ia,keyframe,want_distances=True)
          ia.matches = [(m2,m1) for (m1,m2,m3) in temp_match]
          ia.desc_diffs = [m3 for (m1,m2,m3) in temp_match]
          print "temp matches", temp_match       
          ia.good_matches = [s < self.desc_diff_thresh for s in ia.desc_diffs]

          n_good_matches = len([m for m in ia.desc_diffs if m < self.desc_diff_thresh])

          if DEBUG:
            if len(keyframe.kp)<2:
              print "Keyframe has less than 2 kps"
            if n_good_matches < len(keyframe.kp)/2.0:
              print "ngoodmatches, len key.kp, len key.kp/2", n_good_matches, len(keyframe.kp), len(keyframe.kp)/2.0
        
          # Not enough matches, get a new keyframe
          if len(keyframe.kp)<2 or n_good_matches < len(keyframe.kp)/2.0 : 

            if DEBUG:
              print "New keyframe"

            # Make a new face model, either from a recent good frame, or from the current image
            if not self.same_key_rgfs[iface] :

              if DEBUG:
                print "centers at beginning of new keyframe"
                print "cen2d", [self.faces[iface][0]+self.faces[iface][2]/2.0, self.faces[iface][1]+self.faces[iface][3]/2.0]
                print "cen3d", self.face_centers_3d[iface]


              matched_z_list = [kp3d[2] for (kp3d,is_good) in zip(self.recent_good_frames[iface].kp3d,self.recent_good_frames[iface].good_matches) if is_good]
              if len(matched_z_list) == 0:
                matched_z_list = [kp3d[2] for kp3d in self.recent_good_frames[iface].kp3d]
              avgz_goodmatches = sum(matched_z_list)/ len(matched_z_list)
              tokeep = [math.fabs(self.recent_good_frames[iface].kp3d[i][2]-avgz_goodmatches) < 2.0*self.real_face_sizes_3d[iface] 
                        for i in range(len(self.recent_good_frames[iface].kp3d))]
              kp3d_for_model = [kp3d for (kp3d,tk) in zip(self.recent_good_frames[iface].kp3d,tokeep) if tk]
              kp_for_model = [kp for (kp,tk) in zip(self.recent_good_frames[iface].kp,tokeep) if tk]
              # If you're not left with enough points, just take all of them and don't worry about the depth constraints.
              if len(kp3d_for_model) < 2:
                kp3d_for_model = copy.deepcopy(self.recent_good_frames[iface].kp3d)
                kp_for_model = copy.deepcopy(self.recent_good_frames[iface].kp)

              (cen, diff) = self.rect_to_center_diff(self.recent_good_rects[iface])
              self.feats_to_centers[iface] = self.make_face_model( cen, diff, [(kp0,kp1) for (kp0,kp1,kp2) in kp_for_model])

              cen3d = self.recent_good_centers_3d[iface]
              self.feats_to_centers_3d[iface] = self.make_face_model( cen3d, [self.real_face_sizes_3d[iface]]*3, kp3d_for_model)

              self.keyframes[self.current_keyframes[iface]] = copy.copy(self.recent_good_frames[iface])
              self.keyframes[self.current_keyframes[iface]].kp = kp_for_model
              self.keyframes[self.current_keyframes[iface]].kp2d = [(k0,k1) for (k0,k1,k2) in kp_for_model]
              self.keyframes[self.current_keyframes[iface]].kp3d = kp3d_for_model
              self.keyframes[self.current_keyframes[iface]].matches = [(i,i) for i in range(len(kp_for_model))]
              self.keyframes[self.current_keyframes[iface]].good_matches = [True]*len(kp_for_model)
              self.keyframes[self.current_keyframes[iface]].desc_diffs = [0]*len(kp_for_model)

              if DESCRIPTOR=='CALONDER':
                self.vo.collect_descriptors(self.keyframes[self.current_keyframes[iface]])
              elif DESCRIPTOR=='SAD':
                self.vo.collect_descriptors_sad(self.keyframes[self.current_keyframes[iface]])
              else:
                pass
              

              self.face_centers_3d[iface] = copy.deepcopy(cen3d)
              # Not changing the face size

              self.current_keyframes[iface] = 0 #### HACK: ONLY ONE KEYFRAME!!!

              self.same_key_rgfs[iface] = True
              # Don't need to change the recent good frame yet.

              if DEBUG:
                print "centers at end of new keyframe"
                print "cen2d", [self.faces[iface][0]+self.faces[iface][2]/2.0, self.faces[iface][1]+self.faces[iface][3]/2.0]
                print "cen3d", self.face_centers_3d[iface]

            else :

              # Making a new model off of the current frame but with the predicted new position. 
              # HACK: The displacement computation assumes that the robot/head is still, fix this.
              bad_frame = True
              #done_matching = True
              if DEBUG:
                print "Bad frame ", self.seq, " for face ", iface

              (cen,diff) = self.rect_to_center_diff(self.faces[iface])
              if DEBUG:
                print "Motion for bad frame ", self.recent_good_motion[iface], self.recent_good_motion_3d[iface]
              new_cen = [cen[0]+self.recent_good_motion[iface][0], cen[1]+self.recent_good_motion[iface][1]]
              diff = [diff[0]+self.recent_good_motion[iface][2], diff[1]+self.recent_good_motion[iface][2]]                 

              self.faces[iface] = (new_cen[0]-diff[0], new_cen[1]-diff[1], 2.0*diff[0], 2.0*diff[1])
              (x,y,w,h) = copy.deepcopy(self.faces[iface])

              pred_cen_3d = [o+n for (o,n) in zip(self.face_centers_3d[iface],self.recent_good_motion_3d[iface])]
              pred_cen_3d.append(2.0*self.real_face_sizes_3d[iface])  #### ZMULT
              self.get_features(ia, self.num_feats, (x,y,w,h), pred_cen_3d)
              if not ia.kp2d:
                break

              if DESCRIPTOR=='CALONDER':
                self.vo.collect_descriptors(ia)
              elif DESCRIPTOR=='SAD':
                self.vo.collect_descriptors_sad(ia)
              else:
                pass


              self.keyframes[self.current_keyframes[iface]] = copy.copy(ia)
              self.current_keyframes[iface] = 0
              (cen,diff) = self.rect_to_center_diff(self.faces[iface])
              self.feats_to_centers[iface] = self.make_face_model( cen, diff, ia.kp2d )
              self.feats_to_centers_3d[iface] = self.make_face_model( [pred_cen_3d[0],pred_cen_3d[1],pred_cen_3d[2]], [self.real_face_sizes_3d[iface]]*3, ia.kp3d)
              self.face_centers_3d[iface] = copy.deepcopy(pred_cen_3d)
              self.same_key_rgfs[iface] = True

          # Good matches, mark this frame as good
          else:
            done_matching = True

          # END MATCHING


        # If we got enough matches for this frame, track.
        if ia.kp and ia.kp2d:

          # Track
          sparse_pred_list = []
          sparse_pred_list_2d = []
          probs = []
          bandwidths = []
          size_mult = 0.05 #1.0

          for ((match1, match2), score) in zip(ia.matches, ia.desc_diffs):
            if score < self.desc_diff_thresh:
              sparse_pred_list.append( [ia.kp3d[match2][i]+self.feats_to_centers_3d[iface][match1][i] for i in range(3)] )
              sparse_pred_list_2d.append( [ia.kp2d[match2][i]+self.feats_to_centers[iface][match1][i] for i in range(2)] )
              #probs.append(score)
          probs = [1.0] * len(sparse_pred_list_2d) # Ignore actual match scores. Uncomment line above to use the match scores.
          bandwidths = [size_mult*self.real_face_sizes_3d[iface]] * len(sparse_pred_list_2d)

          (old_center, old_diff) = self.rect_to_center_diff(self.faces[iface])
 
          if DEBUG:
            print "Old center 3d ", self.face_centers_3d[iface]
            print "Old center 2d ", old_center

          old_rect = self.faces[iface] # For display only

          new_center = self.mean_shift_sparse( self.face_centers_3d[iface][0:3], sparse_pred_list, probs, bandwidths, 10, 1.0 )
          new_center_2d = self.cam.cam2pix(new_center[0], new_center[1], new_center[2]) 
          # The above line assumes that we're tracking the face plane center, not the center of the head sphere. 
          # If you want to track the center of the sphere instead, subtract self.real_face_sizes[iface] from the z-coord.
          ltf = self.cam.cam2pix( new_center[0]-self.real_face_sizes_3d[iface], new_center[1]-self.real_face_sizes_3d[iface], new_center[2])
          rbf = self.cam.cam2pix( new_center[0]+self.real_face_sizes_3d[iface], new_center[1]+self.real_face_sizes_3d[iface], new_center[2])
          w = rbf[0]-ltf[0]
          h = rbf[1]-ltf[1]       

          if DEBUG:
            print "new center 3d ", new_center
            print "new_center 2d ", new_center_2d

          (nx,ny,nw,nh) = (new_center_2d[0]-(w-1)/2.0, new_center_2d[1]-(h-1)/2.0, w, h)

          # Force the window back into the image.
          nx += max(0,0-nx) + min(0, im.width - nx+nw)
          ny += max(0,0-ny) + min(0, im.height - ny+nh)

          self.faces[iface] = [nx, ny, nw, nh]
          self.recent_good_rects[iface] = [nx,ny,nw,nh]
          self.recent_good_centers_3d[iface] = copy.deepcopy(new_center)
          if bad_frame:
            self.recent_good_motion[iface] = self.recent_good_motion[iface]
            self.recent_good_motion_3d[iface] = self.recent_good_motion_3d[iface]
          else:
            self.recent_good_motion[iface] = [new_center_2d[0]-old_center[0], new_center_2d[1]-old_center[1], ((nw-1.0)/2.0)-old_diff[0]]
            self.recent_good_motion_3d[iface] = [ new_center[i]-self.face_centers_3d[iface][i] for i in range(len(new_center))]
          self.face_centers_3d[iface] = copy.deepcopy(new_center)
          self.recent_good_frames[iface] = copy.copy(ia)
          self.same_key_rgfs[iface] = False


          if DEBUG:
            print "motion ", self.recent_good_motion[iface], self.recent_good_motion_3d[iface]
            print "face 2d ", self.faces[iface]
            print "face center 3d ", self.face_centers_3d[iface]


          # Output the location of this face center in the 3D camera frame (of the left camera), and rotate 
          # the coordinates to match the robot's idea of the 3D camera frame.
          center_uvd = (nx + (nw-1)/2.0, ny + (nh-1)/2.0, (numpy.average(ia.kp,0))[2] )
          center_camXYZ = self.cam.pix2cam(center_uvd[0], center_uvd[1], center_uvd[2])
          center_robXYZ = (center_camXYZ[2], -center_camXYZ[0], -center_camXYZ[1])

          ########### PUBLISH the face center for the head controller to track. ########
          if not self.usebag:
            #stamped_point = PointStamped()
            #(stamped_point.point.x, stamped_point.point.y, stamped_point.point.z) = center_robXYZ
            #stamped_point.header.frame_id = "stereo"
            #stamped_point.header.stamp = imarray.header.stamp
            #self.pub.publish(stamped_point)
            pm = PositionMeasurement()
            pm.header.stamp = imarray.header.stamp
            pm.name = "stereo_face_feature_tracker"
            pm.object_id = -1
            (pm.pos.x,pm.pos.y, pm.pos.z) = center_robXYZ
            pm.header.frame_id = "stereo_link"
            pm.reliability = 0.5;
            pm.initialization = 0;
            #pm.covariance
            self.pub.publish(pm)            
    

        # End later frames


      ############ DRAWING ################
      if SAVE_PICS:

        if not self.keyframes or len(self.keyframes) <= iface :
          bigim_py = im_py
          draw = ImageDraw.Draw(bigim_py)
        else :
          key_im = self.keyframes[self.current_keyframes[iface]]
          keyim_py = Image.fromstring("L", key_im.size, key_im.rawdata)
          bigim_py = Image.new("RGB",(im_py.size[0]+key_im.size[0], im_py.size[1]))
          bigim_py.paste(keyim_py.convert("RGB"),(0,0))
          bigim_py.paste(im_py,(key_im.size[0]+1,0))
          draw = ImageDraw.Draw(bigim_py)

          (x,y,w,h) = self.faces[iface]
          draw.rectangle((x,y,x+w,y+h),outline=(0,255,0))
          draw.rectangle((x+key_im.size[0],y,x+w+key_im.size[0],y+h),outline=(0,255,0))
          (x,y,w,h) = old_rect
          draw.rectangle((x,y,x+w,y+h),outline=(255,255,255))
          draw.rectangle((x+key_im.size[0],y,x+w+key_im.size[0],y+h),outline=(255,255,255))

          mstart = old_center
          mend = (old_center[0]+self.recent_good_motion[iface][0], old_center[1]+self.recent_good_motion[iface][1])
          draw.rectangle((mstart[0]-1,mstart[1]-1,mstart[0]+1,mstart[1]+1), outline=(255,255,255))
          draw.rectangle((mend[0]-1,mend[1]-1,mend[0]+1,mend[1]+1), outline=(0,255,0))
          draw.line(mstart+mend, fill=(255,255,255))

          for (x,y) in key_im.kp2d :
            draw_x(draw, (x,y), (1,1), (255,0,0))
          for (x,y) in ia.kp2d:
            draw_x(draw, (x+key_im.size[0],y), (1,1), (255,0,0))

          if self.seq > 0 :

            if ia.matches:
              for ((m1,m2), score) in zip(ia.matches,ia.desc_diffs) :
                if score > self.desc_diff_thresh :
                  color = (255,0,0)
                else :
                  color = (0,255,0)
                draw.line((key_im.kp2d[m1][0], key_im.kp2d[m1][1], ia.kp2d[m2][0]+key_im.size[0], ia.kp2d[m2][1]), fill=color)

            for (i, (u,v)) in enumerate(sparse_pred_list_2d) :
              bscale = min(1,probs[i]/0.01)
              draw_x(draw, (u,v), (1,1), (128.0+128.0*bscale,128.0+128.0*bscale,(1.0-bscale)*255.0))
              draw_x(draw, (u+key_im.size[0],v), (1,1),(128.0+128.0*bscale,128.0+128.0*bscale,(1.0-bscale)*255.0))      
 

          ####### PUBLISH 3d visualization point cloud ###################
          if self.usebag and self.visualize:
            cloud = PointCloud()
            cloud.header.frame_id = "stereo"
            cloud.header.stamp = imarray.header.stamp
            cloud.pts = []
            cloud.pts.append(Point())
            (cloud.pts[0].x, cloud.pts[0].y, cloud.pts[0].z) = self.face_centers_3d[iface][:3]
            for (i,kp3d) in enumerate(ia.kp3d):
              cloud.pts.append(Point())
              (cloud.pts[i].x,cloud.pts[i].y,cloud.pts[i].z) = kp3d

            lp = len(cloud.pts)
            if self.seq > 0:
              for (i, (u,v)) in enumerate(sparse_pred_list):
                cloud.pts[lp+i].append(Point())
                (cloud.pts[lp+i].x,cloud.pts[lp+i].y,cloud.pts[lp+i].z) = sparse_pred_list[i][:3]
                        
            self.pub.publish(cloud)

        bigim_py.save("/tmp/tiff/feats%06d_%03d.tiff" % (self.seq, iface))
        #END DRAWING


      # END FACE LOOP

    self.seq += 1
Exemplo n.º 8
0
  def frame(self, imarray):

    # No calibration params yet.
    if not self.vo:
      return

    if self.seq > 10000:
      sys.exit()
    if DEBUG:
      print ""
      print ""
      print "Frame ", self.seq
      print ""
      print ""


    im = imarray.images[1]
    im_r = imarray.images[0]
    if im.colorspace == "mono8":
      im_py = Image.fromstring("L", (im.width, im.height), im.data)
      im_r_py = Image.fromstring("L", (im_r.width, im_r.height), im_r.data)
    elif im.colorspace == "rgb24":
      use_color = True
      im_col_py = Image.fromstring("RGB", (im.width, im.height), im.data)
      im_py = im_col_py.convert("L")
      im_r_py = Image.fromstring("RGB", (im_r.width, im_r.height), im_r.data)
      im_r_py = im_r_py.convert("L")
    else :
      print "Unknown colorspace"
      return
    

    # Detect faces on the first frame
    if not self.current_keyframes :
      self.faces = self.p.detectAllFaces(im_py.tostring(), im.width, im.height, self.cascade_file, 1.0, None, None, True) 
      if DEBUG:
        print "Faces ", self.faces
      
    sparse_pred_list = []
    sparse_pred_list_2d = []
    old_rect = [0,0,0,0]
    ia = SparseStereoFrame(im_py,im_r_py)
    ia.matches = []
    ia.desc_diffs = []
    ia.good_matches = []

    # Track each face
    iface = -1
    for face in self.faces:
      
      iface += 1

      (x,y,w,h) = copy.copy(self.faces[iface])
      if DEBUG:
        print "A face ", (x,y,w,h)

      (old_center, old_diff) = self.rect_to_center_diff((x,y,w,h)) 
      
      if self.face_centers_3d and iface<len(self.face_centers_3d):
        censize3d = list(copy.copy(self.face_centers_3d[iface]))
        censize3d.append(1.0*self.real_face_sizes_3d[iface]) ###ZMULT
        self.get_features(ia, self.num_feats, (x,y,w,h), censize3d)
      else:
        self.get_features(ia, self.num_feats, (x, y, w, h), (0.0,0.0,0.0,1000000.0))
      if not ia.kp2d:
        continue

      # First frame:
      if len(self.current_keyframes) < iface+1:

        (cen,diff) = self.rect_to_center_diff((x,y,w,h))
        cen3d = self.cam.pix2cam(cen[0],cen[1],ia.avgd)
        ltf = self.cam.pix2cam(x,y,ia.avgd)
        rbf = self.cam.pix2cam(x+w,y+h,ia.avgd)
        fs3d = ( (rbf[0]-ltf[0]) + (rbf[1]-ltf[1]) )/4.0

        # Check that the face is a reasonable size. If not, skip this face.
        if 2*fs3d < self.min_real_face_size or 2*fs3d > self.max_real_face_size or iface > 1: #HACK: ONLY ALLOW ONE FACE
          self.faces.pop(iface)
          iface -= 1
          continue

        if DESCRIPTOR=='CALONDER':
          self.vo.collect_descriptors(ia)
        elif DESCRIPTOR=='SAD':
          self.vo.collect_descriptors_sad(ia)
        else:
          pass

        self.current_keyframes.append(0)
        self.keyframes.append(copy.copy(ia))

        self.feats_to_centers.append(self.make_face_model( cen, diff, ia.kp2d ))

        self.real_face_sizes_3d.append( copy.deepcopy(fs3d) )
        self.feats_to_centers_3d.append( self.make_face_model( cen3d, (fs3d,fs3d,fs3d), ia.kp3d) )
        self.face_centers_3d.append( copy.deepcopy(cen3d) )

        self.recent_good_frames.append(copy.copy(ia))
        self.recent_good_rects.append(copy.deepcopy([x,y,w,h]))
        self.recent_good_motion.append([0.0]*3) #dx,dy,dimfacesize
        self.recent_good_motion_3d.append([0.0]*3)

        self.same_key_rgfs.append(True)
        
        # End first frame

      # Later frames
      else :
        if DESCRIPTOR=='CALONDER':
          self.vo.collect_descriptors(ia)
        elif DESCRIPTOR=='SAD':
          self.vo.collect_descriptors_sad(ia)
        else:
          pass


        done_matching = False
        bad_frame = False
        while not done_matching:

          # Try matching to the keyframe
          keyframe = self.keyframes[self.current_keyframes[iface]]
          temp_match = self.vo.temporal_match(ia,keyframe,want_distances=True)
          ia.matches = [(m2,m1) for (m1,m2,m3) in temp_match]
          ia.desc_diffs = [m3 for (m1,m2,m3) in temp_match]
          print "Scores", ia.desc_diffs
          #ia.matches = self.vo.temporal_match(keyframe,ia,want_distances=True)
          #ia.desc_diffs = [(VO.sad(keyframe.descriptors[a], ia.descriptors[b])) for (a,b) in ia.matches]
          ia.good_matches = [s < self.desc_diff_thresh for s in ia.desc_diffs]

          n_good_matches = len([m for m in ia.desc_diffs if m < self.desc_diff_thresh])
        
          # Not enough matches, get a new keyframe
          if len(keyframe.kp)<2 or n_good_matches < len(keyframe.kp)/2.0 : 

            if DEBUG:
              print "New keyframe"

            # Make a new face model, either from a recent good frame, or from the current image
            if not self.same_key_rgfs[iface] :

              matched_z_list = [tz for ((tx,ty,tz),is_good) in zip(self.recent_good_frames[iface].kp,self.recent_good_frames[iface].good_matches) if is_good]
              if len(matched_z_list) == 0:
                matched_z_list = [tz for (tx,ty,tz) in self.recent_good_frames[iface].kp]
              avgd_goodmatches = sum(matched_z_list)/ len(matched_z_list)
              avg3d_goodmatches = self.cam.pix2cam(0.0,0.0,avgd_goodmatches)
              kp3d = [self.cam.pix2cam(kp[0],kp[1],kp[2]) for kp in self.recent_good_frames[iface].kp]
              print "kp ", self.recent_good_frames[iface].kp
              print "kp3d ",kp3d
              print avg3d_goodmatches
              kp3d_for_model = [this_kp3d for this_kp3d in kp3d if math.fabs(this_kp3d[2]-avg3d_goodmatches[2]) < 2.0*self.real_face_sizes_3d[iface] ]
              kp_for_model = [this_kp 
                              for (this_kp, this_kp3d) in zip(self.recent_good_frames[iface].kp, kp3d) 
                              if math.fabs(this_kp3d[2]-avg3d_goodmatches[2]) < 2.0*self.real_face_sizes_3d[iface] ]
              # If you're not left with enough points, just take all of them and don't worry about the depth constraints.
              if len(kp3d_for_model) < 2:
                kp3d_for_model = kp3d
                kp_for_model = copy.deepcopy(self.recent_good_frames[iface].kp)

              (cen, diff) = self.rect_to_center_diff(self.recent_good_rects[iface])
              self.feats_to_centers[iface] = self.make_face_model( cen, diff, [(kp0,kp1) for (kp0,kp1,kp2) in kp_for_model])

              avgd = sum([kp2 for (kp0,kp1,kp2) in kp_for_model])/len(kp_for_model)
              cen3d = self.cam.pix2cam(cen[0],cen[1],avgd)
              self.feats_to_centers_3d[iface] = self.make_face_model( cen3d, [self.real_face_sizes_3d[iface]]*3, kp3d_for_model)

              self.keyframes[self.current_keyframes[iface]] = copy.copy(self.recent_good_frames[iface])
              self.keyframes[self.current_keyframes[iface]].kp = kp_for_model
              self.keyframes[self.current_keyframes[iface]].kp2d = [(k0,k1) for (k0,k1,k2) in kp_for_model]
              self.keyframes[self.current_keyframes[iface]].kp3d = kp3d_for_model
              self.keyframes[self.current_keyframes[iface]].matches = [(i,i) for i in range(len(kp_for_model))]
              self.keyframes[self.current_keyframes[iface]].good_matches = [True]*len(kp_for_model)
              self.keyframes[self.current_keyframes[iface]].desc_diffs = [0]*len(kp_for_model)
              

              self.face_centers_3d[iface] = copy.deepcopy(cen3d)
              # Not changing the face size

              self.current_keyframes[iface] = 0 #### HACK: ONLY ONE KEYFRAME!!!

              self.same_key_rgfs[iface] = True
              # Don't need to change the recent good frame yet.

            else :

              # Making a new model off of the current frame but with the predicted new position. 
              # HACK: The displacement computation assumes that the robot/head is still, fix this.
              bad_frame = True
              #done_matching = True
              if DEBUG:
                print "Bad frame ", self.seq, " for face ", iface

              (cen,diff) = self.rect_to_center_diff(self.faces[iface])
              if DEBUG:
                print "Motion for bad frame ", self.recent_good_motion[iface], self.recent_good_motion_3d[iface]
              new_cen = [cen[0]+self.recent_good_motion[iface][0], cen[1]+self.recent_good_motion[iface][1]]
              diff = [diff[0]+self.recent_good_motion[iface][2], diff[1]+self.recent_good_motion[iface][2]]                 

              self.faces[iface] = (new_cen[0]-diff[0], new_cen[1]-diff[1], 2.0*diff[0], 2.0*diff[1])
              (x,y,w,h) = copy.deepcopy(self.faces[iface])

              pred_cen_3d = [o+n for (o,n) in zip(self.face_centers_3d[iface],self.recent_good_motion_3d[iface])]
              pred_cen_3d.append(1.0*self.real_face_sizes_3d[iface])  #### ZMULT
              self.get_features(ia, self.num_feats, (x,y,w,h), pred_cen_3d)
              if not ia.kp2d:
                break

              if DESCRIPTOR=='CALONDER':
                self.vo.collect_descriptors(ia)
              elif DESCRIPTOR=='SAD':
                self.vo.collect_descriptors_sad(ia)
              else:
                pass


              self.keyframes[self.current_keyframes[iface]] = copy.copy(ia)
              self.current_keyframes[iface] = 0
              (cen,diff) = self.rect_to_center_diff(self.faces[iface])
              self.feats_to_centers[iface] = self.make_face_model( cen, diff, ia.kp2d )
              cen3d = self.cam.pix2cam(cen[0],cen[1],ia.avgd)
              self.feats_to_centers_3d[iface] = self.make_face_model( cen3d, [self.real_face_sizes_3d[iface]]*3, ia.kp3d)
              self.face_centers_3d[iface] = copy.deepcopy(cen3d)
              self.same_key_rgfs[iface] = True

          # Good matches, mark this frame as good
          else:
            done_matching = True

          # END MATCHING


        # If we got enough matches for this frame, track.
        if ia.kp and ia.kp2d:

          # Track
          sparse_pred_list = []
          sparse_pred_list_2d = []
          probs = []
          bandwidths = []
          size_mult = 1.0
          for ((match1, match2), score) in zip(ia.matches, ia.desc_diffs):
            if score < self.desc_diff_thresh:
              kp3d = self.cam.pix2cam(ia.kp[match2][0],ia.kp[match2][1],ia.kp[match2][2])
              sparse_pred_list.append( (kp3d[0]+self.feats_to_centers_3d[iface][match1][0], 
                                        kp3d[1]+self.feats_to_centers_3d[iface][match1][1],
                                        kp3d[2]+self.feats_to_centers_3d[iface][match1][2]) )
              sparse_pred_list_2d.append( (ia.kp2d[match2][0]+self.feats_to_centers[iface][match1][0], ia.kp2d[match2][1]+self.feats_to_centers[iface][match1][1]) ) 
          probs = [1.0] * len(sparse_pred_list_2d)
          bandwidths = [size_mult*self.real_face_sizes_3d[iface]] * len(sparse_pred_list_2d)

          if DEBUG:
            print "Old center 3d ", self.face_centers_3d[iface]
            print "Old center 2d ",(x+(w-1)/2.0, y+(h-1)/2.0) 

          old_rect = self.faces[iface]
          (old_center, old_diff) = self.rect_to_center_diff(old_rect)
          new_center = self.mean_shift_sparse( self.face_centers_3d[iface], sparse_pred_list, probs, bandwidths, 10, 5.0 )
          new_center_2d = self.cam.cam2pix(new_center[0], new_center[1], new_center[2])
          ltf = self.cam.cam2pix( new_center[0]-self.real_face_sizes_3d[iface], new_center[1]-self.real_face_sizes_3d[iface], new_center[2])
          rbf = self.cam.cam2pix( new_center[0]+self.real_face_sizes_3d[iface], new_center[1]+self.real_face_sizes_3d[iface], new_center[2])
          w = rbf[0]-ltf[0]
          h = rbf[1]-ltf[1]       

          if DEBUG:
            print "new center 3d ", new_center
            print "new_center 2d ", new_center_2d

          (nx,ny,nw,nh) = (new_center_2d[0]-(w-1)/2.0, new_center_2d[1]-(h-1)/2.0, w, h)

          # Force the window back into the image.
          dx = max(0,0-nx) + min(0, im.width - nx+nw)
          dy = max(0,0-ny) + min(0, im.height - ny+nh)
          nx += dx
          ny += dy

          self.faces[iface] = [nx, ny, nw, nh]
          self.recent_good_rects[iface] = [nx,ny,nw,nh]
          if bad_frame:
            self.recent_good_motion[iface] = self.recent_good_motion[iface]
            self.recent_good_motion_3d[iface] = self.recent_good_motion_3d[iface]
          else:
            self.recent_good_motion[iface] = [new_center_2d[0]-old_center[0], new_center_2d[1]-old_center[1], ((nw-1.0)/2.0)-old_diff[0]]
            self.recent_good_motion_3d[iface] = [ new_center[i]-self.face_centers_3d[iface][i] for i in range(len(new_center))]
          self.face_centers_3d[iface] = copy.deepcopy(new_center)
          self.recent_good_frames[iface] = copy.copy(ia)
          self.same_key_rgfs[iface] = False


          if DEBUG:
            print "motion ", self.recent_good_motion[iface]
            print "face 2d ", self.faces[iface]
            print "face center 3d ", self.face_centers_3d[iface]


          # Output the location of this face center in the 3D camera frame (of the left camera), and rotate 
          # the coordinates to match the robot's idea of the 3D camera frame.
          center_uvd = (nx + (nw-1)/2.0, ny + (nh-1)/2.0, (numpy.average(ia.kp,0))[2] )
          center_camXYZ = self.cam.pix2cam(center_uvd[0], center_uvd[1], center_uvd[2])
          center_robXYZ = (center_camXYZ[2], -center_camXYZ[0], -center_camXYZ[1])

          ########### PUBLISH the face center for the head controller to track. ########
          if not self.usebag:
            stamped_point = PointStamped()
            (stamped_point.point.x, stamped_point.point.y, stamped_point.point.z) = center_robXYZ
            stamped_point.header.frame_id = "stereo"
            stamped_point.header.stamp = imarray.header.stamp
            self.pub.publish(stamped_point)
    

        # End later frames


      ############ DRAWING ################
      if SAVE_PICS:

        if not self.keyframes or len(self.keyframes) <= iface :
          bigim_py = im_py
          draw = ImageDraw.Draw(bigim_py)
        else :
          key_im = self.keyframes[self.current_keyframes[iface]]
          keyim_py = Image.fromstring("L", key_im.size, key_im.rawdata)
          bigim_py = Image.new("RGB",(im_py.size[0]+key_im.size[0], im_py.size[1]))
          bigim_py.paste(keyim_py.convert("RGB"),(0,0))
          bigim_py.paste(im_py,(key_im.size[0]+1,0))
          draw = ImageDraw.Draw(bigim_py)

          (x,y,w,h) = self.faces[iface]
          draw.rectangle((x,y,x+w,y+h),outline=(0,255,0))
          draw.rectangle((x+key_im.size[0],y,x+w+key_im.size[0],y+h),outline=(0,255,0))
          (x,y,w,h) = old_rect
          draw.rectangle((x,y,x+w,y+h),outline=(255,255,255))
          draw.rectangle((x+key_im.size[0],y,x+w+key_im.size[0],y+h),outline=(255,255,255))

          mstart = old_center
          mend = (old_center[0]+self.recent_good_motion[iface][0], old_center[1]+self.recent_good_motion[iface][1])
          draw.rectangle((mstart[0]-1,mstart[1]-1,mstart[0]+1,mstart[1]+1), outline=(255,255,255))
          draw.rectangle((mend[0]-1,mend[1]-1,mend[0]+1,mend[1]+1), outline=(0,255,0))
          draw.line(mstart+mend, fill=(255,255,255))

          for (x,y) in key_im.kp2d :
            draw_x(draw, (x,y), (1,1), (255,0,0))
          for (x,y) in ia.kp2d:
            draw_x(draw, (x+key_im.size[0],y), (1,1), (255,0,0))

          if self.seq > 0 :

            for (x,y) in sparse_pred_list_2d :
              draw_x(draw, (x,y), (1,1), (0,0,255))
              draw_x(draw, (x+key_im.size[0],y), (1,1), (0,0,255))

            if ia.matches:
              for ((m1,m2), score) in zip(ia.matches,ia.desc_diffs) :
                if score > self.desc_diff_thresh :
                  color = (255,0,0)
                else :
                  color = (0,255,0)
                draw.line((key_im.kp2d[m1][0], key_im.kp2d[m1][1], ia.kp2d[m2][0]+key_im.size[0], ia.kp2d[m2][1]), fill=color)
 

        bigim_py.save("/tmp/tiff/feats%06d_%03d.tiff" % (self.seq, iface))
        #END DRAWING


      # END FACE LOOP

    self.seq += 1