def test_determinism(barbell):

    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)
    sample_points = np.linspace(0, 100, 25)

    embeddings_dataset = generator.flow(
        node_ids=barbell.nodes(),
        sample_points=sample_points,
        batch_size=1,
        repeat=False,
        shuffle=True,
        seed=1234,
    )

    first_epoch = _epoch_as_matrix(embeddings_dataset)

    embeddings_dataset = generator.flow(
        node_ids=barbell.nodes(),
        sample_points=sample_points,
        batch_size=1,
        repeat=False,
        shuffle=True,
        seed=1234,
    )

    second_epcoh = _epoch_as_matrix(embeddings_dataset)

    assert np.array_equal(first_epoch, second_epcoh)
def test_bad_init(barbell):

    with pytest.raises(TypeError):
        generator = GraphWaveGenerator(None, scales=(0.1, 2, 3, 4), degree=10)

    with pytest.raises(TypeError, match="degree: expected.*found float"):
        generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=1.1)

    with pytest.raises(ValueError, match="degree: expected.*found 0"):
        generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=0)
def test_embedding_dim(barbell, num_samples):
    scales = (0.1, 2, 3, 4)
    generator = GraphWaveGenerator(barbell, scales=scales, degree=10)

    sample_points = np.linspace(0, 1, num_samples)

    expected_embed_dim = len(sample_points) * len(scales) * 2

    for x in generator.flow(
        barbell.nodes(), sample_points=sample_points, batch_size=4, repeat=False
    ):

        assert x.shape[1] == expected_embed_dim
def test_flow_repeat(barbell, repeat):
    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)
    sample_points = np.linspace(0, 100, 25)

    for i, x in enumerate(
        generator.flow(
            barbell.nodes(), sample_points=sample_points, batch_size=1, repeat=repeat,
        )
    ):

        if i > barbell.number_of_nodes():
            break

    assert (i > barbell.number_of_nodes()) == repeat
Exemplo n.º 5
0
def test_flow_targets(barbell):

    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)
    sample_points = np.linspace(0, 100, 25)

    for i, x in enumerate(
            generator.flow(
                barbell.nodes(),
                sample_points=sample_points,
                batch_size=1,
                targets=np.arange(barbell.number_of_nodes()),
            )):
        assert len(x) == 2
        assert x[1].numpy() == i
def test_flow_node_ids(barbell):
    sample_points = np.linspace(0, 100, 25)
    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)

    node_ids = list(barbell.nodes())[:4]

    expected_targets = generator._node_lookup(node_ids)
    actual_targets = []
    for x in generator.flow(
        node_ids, sample_points=sample_points, batch_size=1, targets=expected_targets,
    ):

        actual_targets.append(x[1].numpy())

    assert all(a == b for a, b in zip(expected_targets, actual_targets))
Exemplo n.º 7
0
def test_chebyshev(barbell):
    """
    This test checks that the Chebyshev approximation accurately calculates the wavelets. It calculates
    the wavelets exactly using eigenvalues and compares this to the Chebyshev approximation.
    """
    scales = (1, 5, 10)
    sample_points = np.linspace(0, 100, 50).astype(np.float32)
    generator = GraphWaveGenerator(
        barbell,
        scales=scales,
        degree=50,
    )

    # calculate wavelets exactly using eigenvalues
    adj = np.asarray(barbell.to_adjacency_matrix().todense()).astype(
        np.float32)

    degree_mat = sps.diags(np.asarray(adj.sum(1)).ravel())
    laplacian = degree_mat - adj

    eigenvals, eigenvecs = np.linalg.eig(laplacian)
    eigenvecs = np.asarray(eigenvecs)

    psis = [
        eigenvecs.dot(np.diag(np.exp(-s * eigenvals))).dot(
            eigenvecs.transpose()) for s in scales
    ]
    psis = np.stack(psis, axis=1).astype(np.float32)
    ts = tf.convert_to_tensor(sample_points)

    expected_dataset = tf.data.Dataset.from_tensor_slices(psis).map(
        lambda x: _empirical_characteristic_function(x, ts), )
    expected_embeddings = _epoch_as_matrix(expected_dataset)

    actual_dataset = generator.flow(
        node_ids=barbell.nodes(),
        sample_points=sample_points,
        batch_size=1,
        repeat=False,
    )
    actual_embeddings = _epoch_as_matrix(actual_dataset)

    # compare exactly calculated wavelets to chebyshev
    np.testing.assert_allclose(actual_embeddings,
                               expected_embeddings,
                               rtol=1e-2)
def test_init(barbell):
    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)

    assert np.array_equal(generator.scales, np.array((0.1, 2, 3, 4)).astype(np.float32))
    assert generator.coeffs.shape == (4, 10 + 1)
    assert generator.laplacian.shape == (
        barbell.number_of_nodes(),
        barbell.number_of_nodes(),
    )
def test_flow_shuffle(barbell, shuffle):

    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)
    sample_points = np.linspace(0, 100, 25)

    embeddings_dataset = generator.flow(
        node_ids=barbell.nodes(),
        sample_points=sample_points,
        batch_size=1,
        repeat=False,
        shuffle=shuffle,
    )

    first, *rest = [_epoch_as_matrix(embeddings_dataset) for _ in range(20)]

    if shuffle:
        assert not any(np.array_equal(first, r) for r in rest)
    else:
        assert all(np.array_equal(first, r) for r in rest)
Exemplo n.º 10
0
def test_flow_batch_size(barbell, batch_size):

    scales = (0.1, 2, 3, 4)
    generator = GraphWaveGenerator(barbell, scales=scales, degree=10)
    sample_points = np.linspace(0, 100, 25)

    expected_embed_dim = len(sample_points) * len(scales) * 2

    for i, x in enumerate(
            generator.flow(
                barbell.nodes(),
                sample_points=sample_points,
                batch_size=batch_size,
                repeat=False,
            )):
        # all batches except maybe last will have a batch size of batch_size
        if i < barbell.number_of_nodes() // batch_size:
            assert x.shape == (batch_size, expected_embed_dim)
        else:
            assert x.shape == (
                barbell.number_of_nodes() % batch_size,
                expected_embed_dim,
            )
def test_bad_flow(barbell):
    generator = GraphWaveGenerator(barbell, scales=(0.1, 2, 3, 4), degree=10)
    sample_points = np.linspace(0, 100, 25)

    with pytest.raises(TypeError, match="batch_size: expected.*found float"):
        generator.flow(barbell.nodes(), sample_points, batch_size=4.5)

    with pytest.raises(ValueError, match="batch_size: expected.*found 0"):
        generator.flow(barbell.nodes(), sample_points, batch_size=0)

    with pytest.raises(TypeError, match="shuffle: expected.*found int"):
        generator.flow(barbell.nodes(), sample_points, batch_size=1, shuffle=1)

    with pytest.raises(TypeError, match="repeat: expected.*found int"):
        generator.flow(barbell.nodes(), sample_points, batch_size=1, repeat=1)

    with pytest.raises(TypeError, match="num_parallel_calls: expected.*found float"):
        generator.flow(
            barbell.nodes(), sample_points, batch_size=1, num_parallel_calls=2.2
        )

    with pytest.raises(ValueError, match="num_parallel_calls: expected.*found 0"):
        generator.flow(
            barbell.nodes(), sample_points, batch_size=1, num_parallel_calls=0
        )