def gen_model(): # Create the model container object mdl = smodel.Model() # Create the chemical species X = smodel.Spec('X', mdl) Y = smodel.Spec('Y', mdl) # Create separate volume systems for compartments A and B vsysA = smodel.Volsys('vsysA', mdl) vsysB = smodel.Volsys('vsysB', mdl) # Describe diffusion of molecules in compartments A and B # NOTE: diffusion is not defined for species X in compartment B diff_X_A = smodel.Diff('diff_X_A', vsysA, X) diff_X_A.dcst = 0.1e-9 diff_X_B = smodel.Diff('diff_X_B', vsysB, X) diff_X_B.dcst = 0.1e-9 diff_Y_A = smodel.Diff('diff_Y_A', vsysA, Y) diff_Y_A.dcst = 0.1e-9 diff_Y_B = smodel.Diff('diff_Y_B', vsysB, Y) diff_Y_B.dcst = 0.1e-9 # Return the container object return mdl
def setUp(self): self.model = smodel.Model() A = smodel.Spec("A", self.model) B = smodel.Spec("B", self.model) C = smodel.Spec("C", self.model) D = smodel.Spec("D", self.model) E = smodel.Spec("E", self.model) self.vsys1 = smodel.Volsys('vsys1', self.model) self.vsys2 = smodel.Volsys('vsys2', self.model) self.ssys1 = smodel.Surfsys('ssys1', self.model) self.reac1 = smodel.Reac('reac1', self.vsys1, lhs = [A], rhs = [A], kcst = 1e5) self.reac2 = smodel.Reac('reac2', self.vsys2, lhs = [E], rhs = [E], kcst = 1e4) self.sreac = smodel.SReac('sreac', self.ssys1, slhs = [B], srhs = [B], kcst = 1e3) if __name__ == "__main__": self.mesh = meshio.loadMesh('meshes/cyl_len10_diam1')[0] else: self.mesh = meshio.loadMesh('getROIArea_bugfix_test/meshes/cyl_len10_diam1')[0] ntets = self.mesh.countTets() comp1Tets, comp2Tets = [], [] comp1Tris, comp2Tris = set(), set() for i in range(ntets): if self.mesh.getTetBarycenter(i)[0] > 0: comp1Tets.append(i) comp1Tris |= set(self.mesh.getTetTriNeighb(i)) else: comp2Tets.append(i) comp2Tris |= set(self.mesh.getTetTriNeighb(i)) patch1Tris = list(comp1Tris & comp2Tris) self.comp1 = sgeom.TmComp('comp1', self.mesh, comp1Tets) self.comp2 = sgeom.TmComp('comp2', self.mesh, comp2Tets) self.comp1.addVolsys('vsys1') self.comp2.addVolsys('vsys2') self.patch1 = sgeom.TmPatch('patch1', self.mesh, patch1Tris, self.comp1, self.comp2) self.patch1.addSurfsys('ssys1') self.ROI1 = self.mesh.addROI('ROI1', sgeom.ELEM_TET, comp1Tets) self.ROI2 = self.mesh.addROI('ROI2', sgeom.ELEM_TET, comp2Tets) self.ROI3 = self.mesh.addROI('ROI3', sgeom.ELEM_TRI, patch1Tris) self.rng = srng.create('r123', 512) self.rng.initialize(1000) tet_hosts = gd.linearPartition(self.mesh, [steps.mpi.nhosts, 1, 1]) tri_hosts = gd.partitionTris(self.mesh, tet_hosts, patch1Tris) self.solver = solv.TetOpSplit(self.model, self.mesh, self.rng, solv.EF_NONE, tet_hosts, tri_hosts)
def gen_model(): mdl = smodel.Model() X = smodel.Spec('X', mdl) A = smodel.Spec('A', mdl) # Vol/surface systems cytosolv = smodel.Volsys('cytosolv', mdl) dif_X = smodel.Diff('diffX', cytosolv, X) dif_X.setDcst(DCST) reac_X = smodel.Reac('reacX', cytosolv, lhs=[A], rhs=[A, X]) return mdl
def setUp(self): mdl = smodel.Model() S1 = smodel.Spec('S1', mdl) ssys = smodel.Surfsys('ssys', mdl) smodel.SReac('SR01', ssys, slhs=[S1], srhs=[S1], kcst=1) if __name__ == "__main__": mesh = meshio.importAbaqus('meshes/test.inp', 1e-7)[0] else: mesh = meshio.importAbaqus( 'tetODE_setPatchSReacK_bugfix_test/meshes/test.inp', 1e-7)[0] comp1 = sgeom.TmComp('comp1', mesh, range(mesh.countTets())) patch1 = sgeom.TmPatch('patch1', mesh, mesh.getSurfTris(), comp1) patch1.addSurfsys('ssys') rng = srng.create('mt19937', 512) rng.initialize(1234) self.sim = ssolver.TetODE(mdl, mesh, rng) self.sim.setTolerances(1.0e-3, 1.0e-3)
def gen_model(): mdl = smodel.Model() A = smodel.Spec('A', mdl) vsys = smodel.Volsys('cytosolv', mdl) diff_A = smodel.Diff('diff_A', vsys, A) diff_A.setDcst(DCST) return mdl
def setUp(self): self.model = smodel.Model() A = smodel.Spec('A', self.model) surfsys = smodel.Surfsys('ssys', self.model) D_a = smodel.Diff('D_a', surfsys, A) self.DCST = 0.2e-9 D_a.setDcst(self.DCST) self.mesh = meshio.importAbaqus2("directional_dcst_test/mesh_tet.inp", "directional_dcst_test/mesh_tri.inp", 1e-6, "directional_dcst_test/mesh_conf")[0] boundary_tris = self.mesh.getROIData("boundary") v1_tets = self.mesh.getROIData("v1_tets") comp1 = sgeom.TmComp("comp1", self.mesh, v1_tets) patch1 = sgeom.TmPatch("patch", self.mesh, boundary_tris, comp1) patch1.addSurfsys("ssys") self.neigh_tris = self.mesh.getROIData("neigh_tri") self.focus_tri = self.mesh.getROIData("focus_tri")[0] self.rng = srng.create('r123', 512) self.rng.initialize(1000) self.solver = solv.Tetexact(self.model, self.mesh, self.rng)
def setUp(self): self.model = smodel.Model() A = smodel.Spec('A', self.model) volsys = smodel.Volsys('vsys', self.model) D_a = smodel.Diff('D_a', volsys, A) self.DCST = 0.2e-9 D_a.setDcst(self.DCST) self.mesh = meshio.importAbaqus2("directional_dcst_test/mesh_tet.inp", "directional_dcst_test/mesh_tri.inp", 1e-6, "directional_dcst_test/mesh_conf")[0] boundary_tris = self.mesh.getROIData("boundary") v1_tets = self.mesh.getROIData("v1_tets") v2_tets = self.mesh.getROIData("v2_tets") comp1 = sgeom.TmComp("comp1", self.mesh, v1_tets) comp2 = sgeom.TmComp("comp2", self.mesh, v2_tets) comp1.addVolsys("vsys") comp2.addVolsys("vsys") db = sgeom.DiffBoundary("boundary", self.mesh, boundary_tris) self.rng = srng.create('r123', 512) self.rng.initialize(1000) self.solver = solv.Tetexact(self.model, self.mesh, self.rng)
def setUp(self): DCST = 0.08e-10 self.model = smodel.Model() A = smodel.Spec('A', self.model) self.vsys = smodel.Volsys('vsys', self.model) self.ssys = smodel.Surfsys('ssys', self.model) self.diff = smodel.Diff("diff", self.vsys, A, DCST) self.sdiff = smodel.Diff("diff", self.ssys, A, DCST) if __name__ == "__main__": self.mesh = meshio.importAbaqus('meshes/test_mesh.inp', 1e-7)[0] else: self.mesh = meshio.importAbaqus( 'parallel_std_string_bugfix_test/meshes/test_mesh.inp', 1e-7)[0] self.tmcomp = sgeom.TmComp('comp', self.mesh, range(self.mesh.ntets)) self.tmcomp.addVolsys('vsys') self.surf_tris = self.mesh.getSurfTris() self.tmpatch = sgeom.TmPatch('patch', self.mesh, self.surf_tris, icomp=self.tmcomp) self.tmpatch.addSurfsys('ssys') self.rng = srng.create('r123', 512) self.rng.initialize(1000) tet_hosts = gd.binTetsByAxis(self.mesh, steps.mpi.nhosts) tri_hosts = gd.partitionTris(self.mesh, tet_hosts, self.surf_tris) self.solver = solv.TetOpSplit(self.model, self.mesh, self.rng, solv.EF_NONE, tet_hosts, tri_hosts) self.solver.reset()
def setUp(self): DCST = 0.08e-10 self.model = smodel.Model() A = smodel.Spec('A', self.model) self.vsys = smodel.Volsys('vsys', self.model) self.ssys = smodel.Surfsys('ssys', self.model) self.diff = smodel.Diff("diff", self.vsys, A, DCST) self.sdiff = smodel.Diff("diff", self.ssys, A, DCST) if __name__ == "__main__": self.mesh = meshio.importAbaqus('meshes/test_mesh.inp', 1e-7)[0] else: self.mesh = meshio.importAbaqus( 'parallel_diff_sel_test/meshes/test_mesh.inp', 1e-7)[0] self.tmcomp = sgeom.TmComp('comp', self.mesh, range(self.mesh.ntets)) self.tmcomp.addVolsys('vsys') self.surf_tris = self.mesh.getSurfTris() self.tmpatch = sgeom.TmPatch('patch', self.mesh, self.surf_tris, icomp=self.tmcomp) self.tmpatch.addSurfsys('ssys') self.rng = srng.create('r123', 512) self.rng.initialize(1000)
def setUp(self): # model setup mdl = smodel.Model() spc = smodel.Spec('A', mdl) vsys = smodel.Volsys('A', mdl) diff = smodel.Diff('diff_A', vsys, spc) diff.setDcst(0.0) # mesh vertCoos = [0.0, 0.0, 0.0, \ 1.0e-6, 0.0, 0.0, \ 0.0, 1.0e-6, 0.0, \ 0.0, 0.0, 1.0e-6, \ 1.0e-6, 1.0e-6, 1.0e-6 ] vertIds = [0, 1, 2, 3, \ 1, 2, 3, 4 ] # geom setup msh = sgeom.Tetmesh(vertCoos, vertIds) ntets = msh.countTets() comp = sgeom.TmComp('comp', msh, range(ntets)) comp.addVolsys('A') # init sim rng = srng.create('mt19937', 512) rng.initialize(2903) tet_hosts = sgd.linearPartition(msh, [1, 1, smpi.nhosts]) self.sim = spsolver.TetOpSplit(mdl, msh, rng, spsolver.EF_NONE, tet_hosts)
def get_model(): mdl = smod.Model() A = smod.Spec('A', mdl) volsys = smod.Volsys('vsys',mdl) R1 = smod.Reac('R1', volsys, lhs = [], rhs = [A]) R1.setKcst(1e-3) return mdl
def setUp(self): self.model = smodel.Model() A = smodel.Spec('A', self.model) volsys = smodel.Volsys('vsys', self.model) D_a = smodel.Diff('D_a', volsys, A) self.DCST = 0.2e-9 D_a.setDcst(self.DCST) self.mesh = meshio.importAbaqus2("directional_dcst_test/mesh_tet.inp", "directional_dcst_test/mesh_tri.inp", 1e-6, "directional_dcst_test/mesh_conf")[0] comp = sgeom.TmComp("comp", self.mesh, range(self.mesh.ntets)) comp.addVolsys("vsys") self.rng = srng.create('r123', 512) self.rng.initialize(1000) self.solver = solv.Tetexact(self.model, self.mesh, self.rng) boundary_tris = self.mesh.getROIData("boundary") boundary_tets1 = self.mesh.getROIData("boundary_tets_1") boundary_tets2 = self.mesh.getROIData("boundary_tets_2") self.pairing = {} for tri in boundary_tris: neigh_tets = self.mesh.getTriTetNeighb(tri) if neigh_tets[0] in boundary_tets1: self.pairing[tri] = (neigh_tets[0], neigh_tets[1]) else: self.pairing[tri] = (neigh_tets[1], neigh_tets[0])
def test_forev(): mdl = smod.Model() A = smod.Spec('A', mdl) B = smod.Spec('B', mdl) volsys = smod.Volsys('vsys', mdl) R1 = smod.Reac('R1', volsys, lhs=[A], rhs=[B], kcst=KCST_f) R2 = smod.Reac('R2', volsys, lhs=[B], rhs=[A], kcst=KCST_b) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') rng = srng.create('mt19937', 512) rng.initialize(int(time.time() % 4294967295)) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res_m = numpy.zeros([NITER, ntpnts, 2]) for i in range(0, NITER): sim.restore('./validation_cp/cp/first_order_rev') for t in range(0, ntpnts): sim.run(tpnts[t]) res_m[i, t, 0] = sim.getCompConc('comp1', 'A') * 1e6 res_m[i, t, 1] = sim.getCompConc('comp1', 'B') * 1e6 mean_res = numpy.mean(res_m, 0) Aeq = COUNT * (KCST_b / KCST_f) / (1 + (KCST_b / KCST_f)) / (VOL * 6.0221415e26) * 1e6 Beq = (COUNT / (VOL * 6.0221415e26)) * 1e6 - Aeq max_err = 0.0 passed = True for i in range(ntpnts): if i < 7: continue assert (tol_funcs.tolerable(mean_res[i, 0], Aeq, tolerance)) assert (tol_funcs.tolerable(mean_res[i, 1], Beq, tolerance))
def gen_model(): mdl = smodel.Model() A = smodel.Spec('A', mdl) ssys = smodel.Surfsys('ssys', mdl) diff_A = smodel.Diff('diffA', ssys, A, DCST) return mdl
def gen_model(): mdl = smodel.Model() X = smodel.Spec('X', mdl) ssys = smodel.Surfsys('ssys', mdl) diff_X = smodel.Diff('diffX', ssys, X, DCST) return mdl
def gen_model(): mdl = smodel.Model() X = smodel.Spec('X', mdl) cytosolv = smodel.Volsys('cytosolv', mdl) dif_X = smodel.Diff('diffX', cytosolv, X) dif_X.setDcst(DCST) return mdl
def gen_model(): mdl = smod.Model() # The chemical species A = smod.Spec('A', mdl) B = smod.Spec('B', mdl) C = smod.Spec('C', mdl) D = smod.Spec('D', mdl) E = smod.Spec('E', mdl) F = smod.Spec('F', mdl) G = smod.Spec('G', mdl) H = smod.Spec('H', mdl) I = smod.Spec('I', mdl) J = smod.Spec('J', mdl) volsys = smod.Volsys('vsys',mdl) R1 = smod.Reac('R1', volsys, lhs = [A, B], rhs = [C], kcst = 1000.0e6) R2 = smod.Reac('R2', volsys, lhs = [C], rhs = [A,B], kcst = 100) R3 = smod.Reac('R3', volsys, lhs = [C, D], rhs = [E], kcst = 100e6) R4 = smod.Reac('R4', volsys, lhs = [E], rhs = [C,D], kcst = 10) R5 = smod.Reac('R5', volsys, lhs = [F, G], rhs = [H], kcst = 10e6) R6 = smod.Reac('R6', volsys, lhs = [H], rhs = [F,G], kcst = 1) R7 = smod.Reac('R7', volsys, lhs = [H, I], rhs = [J], kcst = 1e6) R8 = smod.Reac('R8', volsys, lhs = [J], rhs = [H,I], kcst = 0.1*10) # The diffusion rules D1 = smod.Diff('D1', volsys, A, 100e-12) D2 = smod.Diff('D2', volsys, B, 90e-12) D3 = smod.Diff('D3', volsys, C, 80e-12) D4 = smod.Diff('D4', volsys, D, 70e-12) D5 = smod.Diff('D5', volsys, E, 60e-12) D6 = smod.Diff('D6', volsys, F, 50e-12) D7 = smod.Diff('D7', volsys, G, 40e-12) D8 = smod.Diff('D8', volsys, H, 30e-12) D9 = smod.Diff('D9', volsys, I, 20e-12) D10 = smod.Diff('D10', volsys, J, 10e-12) return mdl
def test_masteq(): mdl = smod.Model() A = smod.Spec('A', mdl) volsys = smod.Volsys('vsys', mdl) # Production R1 = smod.Reac('R1', volsys, lhs=[], rhs=[A], kcst=KCST_f) R2 = smod.Reac('R2', volsys, lhs=[A], rhs=[], kcst=KCST_b) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') rng = srng.create('mt19937', 1000) rng.initialize(int(time.time() % 4294967295)) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res = numpy.zeros([ntpnts]) sim.restore('./validation_cp/cp/masteq') for t in range(0, ntpnts): sim.run(tpnts[t]) res[t] = sim.getCompCount('comp1', 'A') def fact(x): return (1 if x == 0 else x * fact(x - 1)) # Do cumulative count, but not comparing them all. # Don't get over 50 (I hope) steps_n_res = numpy.zeros(50) for r in res: steps_n_res[int(r)] += 1 for s in range(50): steps_n_res[s] = steps_n_res[s] / ntpnts passed = True max_err = 0.0 k1 = KCST_b k2 = KCST_f * (6.022e23 * 1.0e-15) # Compare 5 to 15 for m in range(5, 16): analy = (1.0 / fact(m)) * math.pow((k2 / k1), m) * math.exp(-(k2 / k1)) assert (tol_funcs.tolerable(steps_n_res[m], analy, tolerance))
def setUp(self): mdl = smodel.Model() self.v1 = 1e-20 self.v2 = 2e-20 self.a1 = 3e-14 self.kreac = 200.0 self.ksreac = 100.0 S1 = smodel.Spec('S1', mdl) S2 = smodel.Spec('S2', mdl) S1S2 = smodel.Spec('S1S2', mdl) vsys = smodel.Volsys('vsys', mdl) ssys = smodel.Surfsys('ssys', mdl) smodel.Reac('reac', vsys, lhs=[S1, S2], rhs=[S2, S2], kcst=self.kreac) smodel.SReac('sreac', ssys, ilhs=[S1], slhs=[S2], srhs=[S1S2], kcst=self.ksreac) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom) comp1.setVol(self.v1) comp1.addVolsys('vsys') comp2 = sgeom.Comp('comp2', geom) comp2.setVol(self.v2) comp1.addVolsys('vsys') patch = sgeom.Patch('patch', geom, comp1, comp2) patch.addSurfsys('ssys') patch.setArea(self.a1) self.mdl, self.geom, self.rng = mdl, geom, srng.create('mt19937',512) self.rng.initialize(1234)
def setUp(self): KCST = 10000.0 DCST = 0.08e-12 self.model = smodel.Model() A = smodel.Spec('A', self.model) B = smodel.Spec('B', self.model) C = smodel.Spec('C', self.model) D = smodel.Spec('D', self.model) E = smodel.Spec('E', self.model) F = smodel.Spec('F', self.model) self.vsys1 = smodel.Volsys('vsys1', self.model) self.vsys2 = smodel.Volsys('vsys2', self.model) self.reac1 = smodel.Reac('reac1', self.vsys1, lhs=[A, B], rhs=[C], kcst=KCST) self.reac2 = smodel.Reac('reac2', self.vsys2, lhs=[D, E], rhs=[F], kcst=KCST) self.geom = sgeom.Geom() self.comp1 = sgeom.Comp('comp1', self.geom, 1e-18) self.comp1.addVolsys('vsys1') self.comp2 = sgeom.Comp('comp2', self.geom, 1e-18) self.comp2.addVolsys('vsys2') if __name__ == "__main__": self.mesh = meshio.importAbaqus('meshes/brick_40_4_4_1400tets.inp', 1e-6)[0] else: self.mesh = meshio.importAbaqus( 'multi_sys_test/meshes/brick_40_4_4_1400tets.inp', 1e-6)[0] comp1_tets = [] comp2_tets = [] for t in range(self.mesh.ntets): cord = self.mesh.getTetBarycenter(t) if cord[0] < 0.0: comp1_tets.append(t) else: comp2_tets.append(t) self.tmcomp1 = sgeom.TmComp('comp1', self.mesh, comp1_tets) self.tmcomp1.addVolsys('vsys1') self.tmcomp2 = sgeom.TmComp('comp2', self.mesh, comp2_tets) self.tmcomp2.addVolsys('vsys2') self.rng = srng.create('r123', 512) self.rng.initialize(1000)
def cbsa2steps(cbsa_model): import steps.geom as swm import steps.model as smodel import steps.rng as srng import steps.solver as ssolver mdl = smodel.Model() vsys = smodel.Volsys('vsys', mdl) mols = [smodel.Spec('M'+str(i), mdl) for i in range(1,cbsa_model.exp_n_molecules)] reactions = [] for i in range(1,cbsa_model.exp_n_reactions): reactants = list(np.where(cbsa_model.expS[:,i] < 0)[0]) reactants_sto = list(cbsa_model.expS[:,i][reactants]*-1) modifiers = list(np.where(cbsa_model.expR[:,i] > 0)[0]) modifiers_sto = list(cbsa_model.expR[:,i][modifiers]) products = list(np.where(cbsa_model.expS[:,i] > 0)[0]) products_sto = list(cbsa_model.expS[:,i][products]) reactants += modifiers reactants_sto += modifiers_sto products += modifiers products_sto += modifiers_sto reactants_objs = [[mols[reactants[j]-1] for k in range(reactants_sto[j])] for j in range(len(reactants))] reactants_objs = [item for sublist in reactants_objs for item in sublist] products_objs = [[mols[products[j]-1] for k in range(products_sto[j])] for j in range(len(products))] products_objs = [item for sublist in products_objs for item in sublist] reactions.append(smodel.Reac("R"+str(i), vsys, lhs=reactants_objs, rhs=products_objs, kcst=cbsa_model.exp_k[i])) wmgeom = swm.Geom() comp = swm.Comp('comp', wmgeom) comp.addVolsys('vsys') comp.setVol(1.6667e-21) r = srng.create('mt19937', 256) r.initialize(int(timer())) sim = ssolver.Wmdirect(mdl, wmgeom, r) sim.reset() for i in range(1,cbsa_model.exp_n_molecules): sim.setCompConc('comp', 'M'+str(i), cbsa_model.exp_x0[i]*1e-6) return sim
def test_foirev(): mdl = smod.Model() A = smod.Spec('A', mdl) volsys = smod.Volsys('vsys', mdl) R1 = smod.Reac('R1', volsys, lhs=[A], rhs=[], kcst=KCST) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') rng = srng.create('mt19937', 1000) rng.initialize(int(time.time() % 4294967295)) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() tpnts = np.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res_m = np.zeros([NITER, ntpnts, 1]) res_std1 = np.zeros([ntpnts, 1]) res_std2 = np.zeros([ntpnts, 1]) for i in range(0, NITER): sim.restore('./validation_cp/cp/first_order_irev') for t in range(0, ntpnts): sim.run(tpnts[t]) res_m[i, t, 0] = sim.getCompCount('comp1', 'A') mean_res = np.mean(res_m, 0) std_res = np.std(res_m, 0) m_tol = 0 s_tol = 0 passed = True for i in range(ntpnts): if i == 0: continue analy = N * np.exp(-KCST * tpnts[i]) std = np.power((N * (np.exp(-KCST * tpnts[i])) * (1 - (np.exp(-KCST * tpnts[i])))), 0.5) if not tol_funcs.tolerable(analy, mean_res[i], tolerance): passed = False assert (tol_funcs.tolerable(std, std_res[i], tolerance))
def run_sim(): # Set up and run the simulations once, before the tests # analyze the results. ##################### First order irreversible ######################### global KCST_foi, N_foi, tolerance_foi KCST_foi = 5 # The reaction constant N_foi = 50 # Can set count or conc NITER_foi = 100000 # The number of iterations # Tolerance for the comparison: # In test runs, with good code, < 1% will fail with a 1.5% tolerance tolerance_foi = 2.0 / 100 ####################### First order reversible ######################### global KCST_f_for, KCST_b_for, COUNT_for, tolerance_for KCST_f_for = 10.0 # The reaction constant KCST_b_for = 2.0 COUNT_for = 100000 # Can set count or conc NITER_for = 10 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 1% tolerance_for = 1.0 / 100 ####################### Second order irreversible A2 ################### global KCST_soA2, CONCA_soA2, tolerance_soA2 KCST_soA2 = 10.0e6 # The reaction constant CONCA_soA2 = 10.0e-6 NITER_soA2 = 1000 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 2% tolerance_soA2 = 1.0 / 100 ####################### Second order irreversible AA ################### global KCST_soAA, CONCA_soAA, CONCB_soAA, tolerance_soAA KCST_soAA = 50.0e6 # The reaction constant CONCA_soAA = 20.0e-6 CONCB_soAA = CONCA_soAA NITER_soAA = 1000 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 1% tolerance_soAA = 1.0 / 100 ####################### Second order irreversible AB ################### global KCST_soAB, CONCA_soAB, CONCB_soAB, tolerance_soAB KCST_soAB = 5.0e6 # The reaction constant CONCA_soAB = 1.0e-6 n_soAB = 2 CONCB_soAB = CONCA_soAB / n_soAB NITER_soAB = 1000 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 1% tolerance_soAB = 1.0 / 100 ####################### Third order irreversible A3 ################### global KCST_toA3, CONCA_toA3, tolerance_toA3 KCST_toA3 = 1.0e12 # The reaction constant CONCA_toA3 = 100.0e-6 NITER_toA3 = 1000 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 1% tolerance_toA3 = 1.0 / 100 ####################### Third order irreversible A2B ################### global KCST_toA2B, CONCA_toA2B, CONCB_toA2B, tolerance_toA2B KCST_toA2B = 0.1e12 # The reaction constant CONCA_toA2B = 30.0e-6 CONCB_toA2B = 20.0e-6 NITER_toA2B = 1000 # The number of iterations # In test runs, with good code, <0.1% will fail with a tolerance of 1% tolerance_toA2B = 1.0 / 100 ####################### Second order irreversible 2D ################### global COUNTA_so2d, COUNTB_so2d, CCST_so2d, tolerance_so2d COUNTA_so2d = 100.0 n_so2d = 2.0 COUNTB_so2d = COUNTA_so2d / n_so2d KCST_so2d = 10.0e10 # The reaction constant AREA_so2d = 10.0e-12 CCST_so2d = KCST_so2d / (6.02214179e23 * AREA_so2d) NITER_so2d = 1000 # The number of iterations # In tests fewer than 0.1% fail with tolerance of 2% tolerance_so2d = 2.0 / 100 ############################ Common parameters ######################## global VOL DT = 0.1 # Sampling time-step INT = 1.1 # Sim endtime VOL = 9.0e-18 NITER_max = 100000 ######################################################################## mdl = smod.Model() volsys = smod.Volsys('vsys', mdl) surfsys = smod.Surfsys('ssys', mdl) # First order irreversible A_foi = smod.Spec('A_foi', mdl) R1_foi = smod.Reac('R1_foi', volsys, lhs=[A_foi], rhs=[], kcst=KCST_foi) # First order reversible A_for = smod.Spec('A_for', mdl) B_for = smod.Spec('B_for', mdl) R1_for = smod.Reac('R1_for', volsys, lhs=[A_for], rhs=[B_for], kcst=KCST_f_for) R2_for = smod.Reac('R2_for', volsys, lhs=[B_for], rhs=[A_for], kcst=KCST_b_for) # Second order irreversible A2 A_soA2 = smod.Spec('A_soA2', mdl) C_soA2 = smod.Spec('C_soA2', mdl) R1_soA2 = smod.Reac('R1_soA2', volsys, lhs=[A_soA2, A_soA2], rhs=[C_soA2], kcst=KCST_soA2) # Second order irreversible AA A_soAA = smod.Spec('A_soAA', mdl) B_soAA = smod.Spec('B_soAA', mdl) C_soAA = smod.Spec('C_soAA', mdl) R1_soAA = smod.Reac('R1_soAA', volsys, lhs=[A_soAA, B_soAA], rhs=[C_soAA], kcst=KCST_soAA) # Second order irreversible AB A_soAB = smod.Spec('A_soAB', mdl) B_soAB = smod.Spec('B_soAB', mdl) C_soAB = smod.Spec('C_soAB', mdl) R1_soAB = smod.Reac('R1_soAB', volsys, lhs=[A_soAB, B_soAB], rhs=[C_soAB], kcst=KCST_soAB) # Third order irreversible A3 A_toA3 = smod.Spec('A_toA3', mdl) C_toA3 = smod.Spec('C_toA3', mdl) R1_toA3 = smod.Reac('R1_toA3', volsys, lhs=[A_toA3, A_toA3, A_toA3], rhs=[C_toA3], kcst=KCST_toA3) # Third order irreversible A2B A_toA2B = smod.Spec('A_toA2B', mdl) B_toA2B = smod.Spec('B_toA2B', mdl) C_toA2B = smod.Spec('C_toA2B', mdl) R1_toA3 = smod.Reac('R1_toA2B', volsys, lhs=[A_toA2B, A_toA2B, B_toA2B], rhs=[C_toA2B], kcst=KCST_toA2B) # Second order irreversible 2D A_so2d = smod.Spec('A_so2d', mdl) B_so2d = smod.Spec('B_so2d', mdl) C_so2d = smod.Spec('C_so2d', mdl) SR1_so2d = smod.SReac('SR1_so2d', surfsys, slhs=[A_so2d, B_so2d], srhs=[C_so2d], kcst=KCST_so2d) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') patch1 = sgeom.Patch('patch1', geom, comp1, area=AREA_so2d) patch1.addSurfsys('ssys') rng = srng.create('r123', 512) rng.initialize(1000) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() global tpnts, ntpnts tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res_m_foi = numpy.zeros([NITER_foi, ntpnts, 1]) res_std1_foi = numpy.zeros([ntpnts, 1]) res_std2_foi = numpy.zeros([ntpnts, 1]) res_m_for = numpy.zeros([NITER_for, ntpnts, 2]) res_m_soA2 = numpy.zeros([NITER_soA2, ntpnts, 2]) res_m_soAA = numpy.zeros([NITER_soAA, ntpnts, 3]) res_m_soAB = numpy.zeros([NITER_soAB, ntpnts, 3]) res_m_toA3 = numpy.zeros([NITER_toA3, ntpnts, 2]) res_m_toA2B = numpy.zeros([NITER_toA2B, ntpnts, 3]) res_m_so2d = numpy.zeros([NITER_so2d, ntpnts, 3]) for i in range(0, NITER_max): sim.reset() if i < NITER_foi: sim.setCompCount('comp1', 'A_foi', N_foi) if i < NITER_for: sim.setCompCount('comp1', 'A_for', COUNT_for) sim.setCompCount('comp1', 'B_for', 0.0) if i < NITER_soA2: sim.setCompConc('comp1', 'A_soA2', CONCA_soA2) if i < NITER_soAA: sim.setCompConc('comp1', 'A_soAA', CONCA_soAA) sim.setCompConc('comp1', 'B_soAA', CONCB_soAA) if i < NITER_soAB: sim.setCompConc('comp1', 'A_soAB', CONCA_soAB) sim.setCompConc('comp1', 'B_soAB', CONCB_soAB) if i < NITER_toA3: sim.setCompConc('comp1', 'A_toA3', CONCA_toA3) if i < NITER_toA2B: sim.setCompConc('comp1', 'A_toA2B', CONCA_toA2B) sim.setCompConc('comp1', 'B_toA2B', CONCB_toA2B) if i < NITER_so2d: sim.setPatchCount('patch1', 'A_so2d', COUNTA_so2d) sim.setPatchCount('patch1', 'B_so2d', COUNTB_so2d) for t in range(0, ntpnts): sim.run(tpnts[t]) if i < NITER_foi: res_m_foi[i, t, 0] = sim.getCompCount('comp1', 'A_foi') if i < NITER_for: res_m_for[i, t, 0] = sim.getCompConc('comp1', 'A_for') * 1e6 res_m_for[i, t, 1] = sim.getCompConc('comp1', 'B_for') * 1e6 if i < NITER_soA2: res_m_soA2[i, t, 0] = sim.getCompConc('comp1', 'A_soA2') if i < NITER_soAA: res_m_soAA[i, t, 0] = sim.getCompConc('comp1', 'A_soAA') res_m_soAA[i, t, 1] = sim.getCompConc('comp1', 'B_soAA') if i < NITER_soAB: res_m_soAB[i, t, 0] = sim.getCompConc('comp1', 'A_soAB') res_m_soAB[i, t, 1] = sim.getCompConc('comp1', 'B_soAB') if i < NITER_toA3: res_m_toA3[i, t, 0] = sim.getCompConc('comp1', 'A_toA3') if i < NITER_toA2B: res_m_toA2B[i, t, 0] = sim.getCompConc('comp1', 'A_toA2B') res_m_toA2B[i, t, 1] = sim.getCompConc('comp1', 'B_toA2B') res_m_toA2B[i, t, 2] = sim.getCompConc('comp1', 'C_toA2B') if i < NITER_so2d: res_m_so2d[i, t, 0] = sim.getPatchCount('patch1', 'A_so2d') res_m_so2d[i, t, 1] = sim.getPatchCount('patch1', 'B_so2d') global mean_res_foi, std_res_foi mean_res_foi = numpy.mean(res_m_foi, 0) std_res_foi = numpy.std(res_m_foi, 0) global mean_res_for mean_res_for = numpy.mean(res_m_for, 0) global mean_res_soA2 mean_res_soA2 = numpy.mean(res_m_soA2, 0) global mean_res_soAA mean_res_soAA = numpy.mean(res_m_soAA, 0) global mean_res_soAB mean_res_soAB = numpy.mean(res_m_soAB, 0) global mean_res_toA3 mean_res_toA3 = numpy.mean(res_m_toA3, 0) global mean_res_toA2B mean_res_toA2B = numpy.mean(res_m_toA2B, 0) global mean_res_so2d mean_res_so2d = numpy.mean(res_m_so2d, 0) global ran_sim ran_sim = True
def test_masteq(): "Reaction - Production and degradation (Wmdirect)" ######################################################################## KCST_f = 100 / (6.022e23 * 1.0e-15) # The reaction constant, production KCST_b = 10 # The reaction constant, degradation VOL = 1.0e-18 DT = 0.1 # Sampling time-step INT = 200000.1 # Sim endtime # Tolerance for the comparison: # In tests with good code <1% fail with tolerance of 1.5% tolerance = 1.5 / 100 ######################################################################## mdl = smod.Model() A = smod.Spec('A', mdl) volsys = smod.Volsys('vsys', mdl) # Production R1 = smod.Reac('R1', volsys, lhs=[], rhs=[A], kcst=KCST_f) R2 = smod.Reac('R2', volsys, lhs=[A], rhs=[], kcst=KCST_b) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') rng = srng.create('r123', 1000) rng.initialize(1000) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res = numpy.zeros([ntpnts]) sim.reset() sim.setCompCount('comp1', 'A', 0) for t in range(0, ntpnts): sim.run(tpnts[t]) res[t] = sim.getCompCount('comp1', 'A') def fact(x): return (1 if x == 0 else x * fact(x - 1)) # Do cumulative count, but not comparing them all. # Don't get over 50 (I hope) steps_n_res = numpy.zeros(50) for r in res: steps_n_res[int(r)] += 1 for s in range(50): steps_n_res[s] = steps_n_res[s] / ntpnts passed = True max_err = 0.0 k1 = KCST_b k2 = KCST_f * (6.022e23 * 1.0e-15) # Compare 5 to 15 for m in range(5, 16): analy = (1.0 / fact(m)) * math.pow((k2 / k1), m) * math.exp(-(k2 / k1)) assert tol_funcs.tolerable(steps_n_res[m], analy, tolerance)
N = 50 # Can set count or conc VOL = 1.0e-18 NITER = 100000 # The number of iterations DT = 0.1 # Sampling time-step INT = 1.1 # Sim endtime # Tolerance for the comparison: # In test runs, with good code, < 1% will fail with a 1.5% tolerance tolerance = 2.0 / 100 ######################################################################## mdl = smod.Model() A = smod.Spec('A', mdl) volsys = smod.Volsys('vsys', mdl) R1 = smod.Reac('R1', volsys, lhs=[A], rhs=[], kcst=KCST) geom = sgeom.Geom() comp1 = sgeom.Comp('comp1', geom, VOL) comp1.addVolsys('vsys') rng = srng.create('mt19937', 1000) rng.initialize(int(time.time() % 4294967295)) sim = ssolv.Wmdirect(mdl, geom, rng) sim.reset() tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0]
def run_sim(): # Set up and run the simulations once, before the tests # analyze the results. ##################### First order irreversible ######################### global KCST_foi, N_foi, tolerance_foi KCST_foi = 5 # The reaction constant N_foi = 50 # Can set count or conc NITER_foi = 1 # The number of iterations # Tolerance for the comparison: tolerance_foi = 1.0e-4 / 100 ####################### First order reversible ######################### global KCST_f_for, KCST_b_for, COUNT_for, tolerance_for KCST_f_for = 20.0 # The reaction constant KCST_b_for = 5.0 COUNT_for = 100000 # Can set count or conc NITER_for = 1 # The number of iterations tolerance_for = 1.0e-4 / 100 ####################### Second order irreversible A2 ################### global KCST_soA2, CONCA_soA2, tolerance_soA2 KCST_soA2 = 10.0e6 # The reaction constant CONCA_soA2 = 10.0e-6 NITER_soA2 = 1 # The number of iterations tolerance_soA2 = 1.0e-4 / 100 ####################### Second order irreversible AA ################### global KCST_soAA, CONCA_soAA, CONCB_soAA, tolerance_soAA KCST_soAA = 5.0e6 # The reaction constant CONCA_soAA = 20.0e-6 CONCB_soAA = CONCA_soAA NITER_soAA = 1 # The number of iterations tolerance_soAA = 1.0e-4 / 100 ####################### Second order irreversible AB ################### global KCST_soAB, CONCA_soAB, CONCB_soAB, tolerance_soAB KCST_soAB = 5.0e6 # The reaction constant CONCA_soAB = 1.0e-6 n_soAB = 2 CONCB_soAB = CONCA_soAB / n_soAB NITER_soAB = 1 # The number of iterations tolerance_soAB = 1.0e-4 / 100 ####################### Third order irreversible A3 ################### global KCST_toA3, CONCA_toA3, tolerance_toA3 KCST_toA3 = 1.0e12 # The reaction constant CONCA_toA3 = 10.0e-6 NITER_toA3 = 1 # The number of iterations tolerance_toA3 = 1.0e-4 / 100 ####################### Third order irreversible A2B ################### global KCST_toA2B, CONCA_toA2B, CONCB_toA2B, tolerance_toA2B KCST_toA2B = 0.1e12 # The reaction constant CONCA_toA2B = 30.0e-6 CONCB_toA2B = 20.0e-6 NITER_toA2B = 1 # The number of iterations tolerance_toA2B = 1.0e-4 / 100 ####################### Second order irreversible 2D ################### global COUNTA_so2d, COUNTB_so2d, CCST_so2d, tolerance_so2d COUNTA_so2d = 100.0 n_so2d = 2.0 COUNTB_so2d = COUNTA_so2d / n_so2d KCST_so2d = 10.0e10 # The reaction constant AREA_so2d = 10.0e-12 NITER_so2d = 1 # The number of iterations tolerance_so2d = 1.0e-4 / 100 ############################ Common parameters ######################## global VOL DT = 0.1 # Sampling time-step INT = 1.1 # Sim endtime NITER_max = 1 ######################################################################## mdl = smod.Model() volsys = smod.Volsys('vsys', mdl) surfsys = smod.Surfsys('ssys', mdl) # First order irreversible A_foi = smod.Spec('A_foi', mdl) A_foi_diff = smod.Diff('A_foi_diff', volsys, A_foi, 0.01e-12) R1_foi = smod.Reac('R1_foi', volsys, lhs=[A_foi], rhs=[], kcst=KCST_foi) # First order reversible A_for = smod.Spec('A_for', mdl) B_for = smod.Spec('B_for', mdl) A_for_diff = smod.Diff('A_for_diff', volsys, A_for, 0.01e-12) B_for_diff = smod.Diff('B_for_diff', volsys, B_for, 0.01e-12) R1_for = smod.Reac('R1_for', volsys, lhs=[A_for], rhs=[B_for], kcst=KCST_f_for) R2_for = smod.Reac('R2_for', volsys, lhs=[B_for], rhs=[A_for], kcst=KCST_b_for) # Second order irreversible A2 A_soA2 = smod.Spec('A_soA2', mdl) C_soA2 = smod.Spec('C_soA2', mdl) A_soA2_diff = smod.Diff('A_soA2_diff', volsys, A_soA2, 1e-12) R1_soA2 = smod.Reac('R1_soA2', volsys, lhs=[A_soA2, A_soA2], rhs=[C_soA2], kcst=KCST_soA2) # Second order irreversible AA A_soAA = smod.Spec('A_soAA', mdl) B_soAA = smod.Spec('B_soAA', mdl) C_soAA = smod.Spec('C_soAA', mdl) A_soAA_diff = smod.Diff('A_soAA_diff', volsys, A_soAA, 0.2e-12) B_soAA_diff = smod.Diff('B_soAA_diff', volsys, B_soAA, 0.2e-12) R1_soAA = smod.Reac('R1_soAA', volsys, lhs=[A_soAA, B_soAA], rhs=[C_soAA], kcst=KCST_soAA) # Second order irreversible AB A_soAB = smod.Spec('A_soAB', mdl) B_soAB = smod.Spec('B_soAB', mdl) C_soAB = smod.Spec('C_soAB', mdl) A_soAB_diff = smod.Diff('A_soAB_diff', volsys, A_soAB, 0.1e-12) B_soAB_diff = smod.Diff('B_soAB_diff', volsys, B_soAB, 0.1e-12) R1_soAB = smod.Reac('R1_soAB', volsys, lhs=[A_soAB, B_soAB], rhs=[C_soAB], kcst=KCST_soAB) # Third order irreversible A3 A_toA3 = smod.Spec('A_toA3', mdl) C_toA3 = smod.Spec('C_toA3', mdl) A_soA3_diff = smod.Diff('A_soA3_diff', volsys, A_toA3, 0.2e-12) R1_toA3 = smod.Reac('R1_toA3', volsys, lhs=[A_toA3, A_toA3, A_toA3], rhs=[C_toA3], kcst=KCST_toA3) # Third order irreversible A2B A_toA2B = smod.Spec('A_toA2B', mdl) B_toA2B = smod.Spec('B_toA2B', mdl) C_toA2B = smod.Spec('C_toA2B', mdl) A_soA2B_diff = smod.Diff('A_soA2B_diff', volsys, A_toA2B, 0.1e-12) B_soA2B_diff = smod.Diff('B_soA2B_diff', volsys, B_toA2B, 0.1e-12) R1_toA3 = smod.Reac('R1_toA2B', volsys, lhs=[A_toA2B, A_toA2B, B_toA2B], rhs=[C_toA2B], kcst=KCST_toA2B) # Second order irreversible 2D A_so2d = smod.Spec('A_so2d', mdl) B_so2d = smod.Spec('B_so2d', mdl) C_so2d = smod.Spec('C_so2d', mdl) A_so2d_diff = smod.Diff('A_so2d_diff', surfsys, A_so2d, 1.0e-12) B_so2d_diff = smod.Diff('B_so2d_diff', surfsys, B_so2d, 1.0e-12) SR1_so2d = smod.SReac('SR1_so2d', surfsys, slhs=[A_so2d, B_so2d], srhs=[C_so2d], kcst=KCST_so2d) mesh = smeshio.importAbaqus('validation_rd/meshes/sphere_rad1_37tets.inp', 1e-6)[0] VOL = mesh.getMeshVolume() comp1 = sgeom.TmComp('comp1', mesh, range(mesh.ntets)) comp1.addVolsys('vsys') patch1 = sgeom.TmPatch('patch1', mesh, mesh.getSurfTris(), comp1) patch1.addSurfsys('ssys') CCST_so2d = KCST_so2d / (6.02214179e23 * patch1.getArea()) rng = srng.create('r123', 512) rng.initialize(1000) sim = ssolv.TetODE(mdl, mesh, rng) sim.setTolerances(1e-9, 1e-7) global tpnts, ntpnts tpnts = numpy.arange(0.0, INT, DT) ntpnts = tpnts.shape[0] res_m_foi = numpy.zeros([NITER_foi, ntpnts, 1]) res_m_for = numpy.zeros([NITER_for, ntpnts, 2]) res_m_soA2 = numpy.zeros([NITER_soA2, ntpnts, 2]) res_m_soAA = numpy.zeros([NITER_soAA, ntpnts, 3]) res_m_soAB = numpy.zeros([NITER_soAB, ntpnts, 3]) res_m_toA3 = numpy.zeros([NITER_toA3, ntpnts, 2]) res_m_toA2B = numpy.zeros([NITER_toA2B, ntpnts, 3]) res_m_so2d = numpy.zeros([NITER_so2d, ntpnts, 3]) for i in range(0, NITER_max): if i < NITER_foi: sim.setCompCount('comp1', 'A_foi', N_foi) if i < NITER_for: sim.setCompCount('comp1', 'A_for', COUNT_for) sim.setCompCount('comp1', 'B_for', 0.0) if i < NITER_soA2: sim.setCompConc('comp1', 'A_soA2', CONCA_soA2) if i < NITER_soAA: sim.setCompConc('comp1', 'A_soAA', CONCA_soAA) sim.setCompConc('comp1', 'B_soAA', CONCB_soAA) if i < NITER_soAB: sim.setCompConc('comp1', 'A_soAB', CONCA_soAB) sim.setCompConc('comp1', 'B_soAB', CONCB_soAB) if i < NITER_toA3: sim.setCompConc('comp1', 'A_toA3', CONCA_toA3) if i < NITER_toA2B: sim.setCompConc('comp1', 'A_toA2B', CONCA_toA2B) sim.setCompConc('comp1', 'B_toA2B', CONCB_toA2B) if i < NITER_so2d: sim.setPatchCount('patch1', 'A_so2d', COUNTA_so2d) sim.setPatchCount('patch1', 'B_so2d', COUNTB_so2d) for t in range(0, ntpnts): sim.run(tpnts[t]) if i < NITER_foi: res_m_foi[i, t, 0] = sim.getCompCount('comp1', 'A_foi') if i < NITER_for: res_m_for[i, t, 0] = sim.getCompConc('comp1', 'A_for') * 1e6 res_m_for[i, t, 1] = sim.getCompConc('comp1', 'B_for') * 1e6 if i < NITER_soA2: res_m_soA2[i, t, 0] = sim.getCompConc('comp1', 'A_soA2') if i < NITER_soAA: res_m_soAA[i, t, 0] = sim.getCompConc('comp1', 'A_soAA') res_m_soAA[i, t, 1] = sim.getCompConc('comp1', 'B_soAA') if i < NITER_soAB: res_m_soAB[i, t, 0] = sim.getCompConc('comp1', 'A_soAB') res_m_soAB[i, t, 1] = sim.getCompConc('comp1', 'B_soAB') if i < NITER_toA3: res_m_toA3[i, t, 0] = sim.getCompConc('comp1', 'A_toA3') if i < NITER_toA2B: res_m_toA2B[i, t, 0] = sim.getCompConc('comp1', 'A_toA2B') res_m_toA2B[i, t, 1] = sim.getCompConc('comp1', 'B_toA2B') res_m_toA2B[i, t, 2] = sim.getCompConc('comp1', 'C_toA2B') if i < NITER_so2d: res_m_so2d[i, t, 0] = sim.getPatchCount('patch1', 'A_so2d') res_m_so2d[i, t, 1] = sim.getPatchCount('patch1', 'B_so2d') global mean_res_foi mean_res_foi = numpy.mean(res_m_foi, 0) global mean_res_for mean_res_for = numpy.mean(res_m_for, 0) global mean_res_soA2 mean_res_soA2 = numpy.mean(res_m_soA2, 0) global mean_res_soAA mean_res_soAA = numpy.mean(res_m_soAA, 0) global mean_res_soAB mean_res_soAB = numpy.mean(res_m_soAB, 0) global mean_res_toA3 mean_res_toA3 = numpy.mean(res_m_toA3, 0) global mean_res_toA2B mean_res_toA2B = numpy.mean(res_m_toA2B, 0) global mean_res_so2d mean_res_so2d = numpy.mean(res_m_so2d, 0) global ran_sim ran_sim = True
#based on the paper "stochastic chemical reactions" #model: #X1bar ->c1-> Y1 import steps.model as smodel #import package steps.model that contains all the definitions of #the objects and functions you need to describe the physics and #chemistory. mdl = smodel.Model() #mdl variable for discribing model. #create a top-level container object for our model this top model #container is required for all simulations in STEPS. molX1bar = smodel.Spec('molX1bar', mdl) molY1 = smodel.Spec('molY1', mdl) #create 2 steps.model.Spec objects corresponding to 2 chamical #spicies vsys = smodel.Volsys('vsys', mdl) #create a volume system #volume systems art container objects that group a number of #stoichimetric reaction rules. c1reac_f = smodel.Reac('c1reac_f', vsys, lhs=[molX1bar], rhs=[molY1], kcst=0.2) #create the reaction rules themselves #what is cicst = 0.3e6? import steps.geom as swm #import the geometry module that contains the objects used to
tolerance = 7.5/100 # create the array of tet indices to be found at random tetidxs = numpy.zeros(SAMPLE, dtype = 'int') # further create the array of tet barycenter distance to center tetrads = numpy.zeros(SAMPLE) ######################################################################## rng = srng.create('mt19937', 512) rng.initialize(int(time.time()%4294967295)) # The max unsigned long mdl = smod.Model() A = smod.Spec('A', mdl) B = smod.Spec('B', mdl) volsys = smod.Volsys('vsys',mdl) R1 = smod.Reac('R1', volsys, lhs = [A,B], rhs = []) R1.setKcst(RCST) D_a = smod.Diff('D_a', volsys, A) D_a.setDcst(DCSTA) D_b = smod.Diff('D_b', volsys, B) D_b.setDcst(DCSTB)
def setUp(self): KCST = 1e6 DCST = 0.08e-12 self.model = smodel.Model() A = smodel.Spec('A', self.model) B = smodel.Spec('B', self.model) C = smodel.Spec('C', self.model) D = smodel.Spec('D', self.model) E = smodel.Spec('E', self.model) F = smodel.Spec('F', self.model) self.ssys1 = smodel.Surfsys('ssys1', self.model) self.ssys2 = smodel.Surfsys('ssys2', self.model) self.sreac1 = smodel.SReac('sreac1', self.ssys1, slhs=[A, B], srhs=[C], kcst=KCST) self.sreac2 = smodel.SReac('sreac2', self.ssys2, slhs=[D, E], srhs=[F], kcst=KCST) self.geom = sgeom.Geom() self.comp = sgeom.Comp('comp', self.geom, 1e-18) self.patch1 = sgeom.Patch('patch1', self.geom, self.comp, None, 1e-12) self.patch1.addSurfsys('ssys1') self.patch2 = sgeom.Patch('patch2', self.geom, self.comp, None, 1e-12) self.patch2.addSurfsys('ssys2') if __name__ == "__main__": self.mesh = meshio.importAbaqus('meshes/brick_40_4_4_1400tets.inp', 1e-6)[0] else: self.mesh = meshio.importAbaqus( 'multi_sys_test/meshes/brick_40_4_4_1400tets.inp', 1e-6)[0] comp1_tets = [] comp2_tets = [] for t in range(self.mesh.ntets): cord = self.mesh.getTetBarycenter(t) if cord[0] < 0.0: comp1_tets.append(t) else: comp2_tets.append(t) self.tmcomp = sgeom.TmComp('comp', self.mesh, range(self.mesh.ntets)) surf_tris = self.mesh.getSurfTris() patch_tris1 = [] patch_tris2 = [] for tri in surf_tris: tet_neighs = self.mesh.getTriTetNeighb(tri) for tet in tet_neighs: if tet in comp1_tets: patch_tris1.append(tri) break elif tet in comp2_tets: patch_tris2.append(tri) break self.tmpatch1 = sgeom.TmPatch('patch1', self.mesh, patch_tris1, self.tmcomp) self.tmpatch1.addSurfsys('ssys1') self.tmpatch2 = sgeom.TmPatch('patch2', self.mesh, patch_tris2, self.tmcomp) self.tmpatch2.addSurfsys('ssys2') self.rng = srng.create('r123', 512) self.rng.initialize(1000)
def setUp(self): mdl = smodel.Model() S1 = smodel.Spec('S1', mdl) vsys = smodel.Volsys('vsys', mdl) ssys = smodel.Surfsys('ssys', mdl) smodel.Reac('R01', vsys, lhs=[S1], rhs=[S1], kcst=1) smodel.SReac('SR01', ssys, slhs=[S1], srhs=[S1], kcst=1) vrange = [-200.0e-3, 50e-3, 1e-3] vrate = lambda v: 2.0 Chan1 = smodel.Chan('Chan1', mdl) chanop = smodel.ChanState('chanop', mdl, Chan1) chancl = smodel.ChanState('chancl', mdl, Chan1) smodel.VDepSReac('VDSR01', ssys, slhs=[chancl], srhs=[chanop], k=vrate, vrange=vrange) smodel.VDepSReac('VDSR02', ssys, srhs=[chancl], slhs=[chanop], k=vrate, vrange=vrange) Chan1_Ohm_I = smodel.OhmicCurr('Chan1_Ohm_I', ssys, chanstate=chanop, g=20e-12, erev=-77e-3) if __name__ == "__main__": self.mesh = meshio.importAbaqus('meshes/test.inp', 1e-7)[0] else: self.mesh = meshio.importAbaqus( 'missing_solver_methods_test/meshes/test.inp', 1e-7)[0] comp1 = sgeom.TmComp('comp1', self.mesh, range(self.mesh.countTets())) comp1.addVolsys('vsys') patch1 = sgeom.TmPatch('patch1', self.mesh, self.mesh.getSurfTris(), comp1) patch1.addSurfsys('ssys') self.c1ROIInds = range(10) self.p1ROIInds = range(5) self.mesh.addROI('comp1ROI', sgeom.ELEM_TET, self.c1ROIInds) self.mesh.addROI('patch1ROI', sgeom.ELEM_TRI, self.p1ROIInds) membrane = sgeom.Memb('membrane', self.mesh, [patch1], opt_method=1) rng = srng.create('mt19937', 512) rng.initialize(1234) self.sim = ssolver.Tetexact(mdl, self.mesh, rng, True) self.sim.setEfieldDT(1e-4) self.sim.reset()