def test_multi_sample(): m = Measure() p1 = GP(1, 0, measure=m) p2 = GP(2, 0, measure=m) p3 = GP(3, 0, measure=m) x1 = B.linspace(0, 1, 5) x2 = B.linspace(0, 1, 10) x3 = B.linspace(0, 1, 15) fdds = (p1(x1), p2(x2), p3(x3)) s1, s2, s3 = m.sample(*fdds) assert B.shape(p1(x1).sample()) == s1.shape == (5, 1) assert B.shape(p2(x2).sample()) == s2.shape == (10, 1) assert B.shape(p3(x3).sample()) == s3.shape == (15, 1) approx(s1, 1 * B.ones(5, 1)) approx(s2, 2 * B.ones(10, 1)) approx(s3, 3 * B.ones(15, 1)) # Test random state. state, s11, s21, s31 = m.sample(B.create_random_state(np.float64, seed=0), *fdds) state, s12, s22, s32 = m.sample(B.create_random_state(np.float64, seed=0), *fdds) assert isinstance(state, B.RandomState) approx(s11, s12) approx(s21, s22) approx(s31, s32)
def test_logpdf(): m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(Exp(), measure=m) p3 = p1 + p2 x1 = B.linspace(0, 2, 5) x2 = B.linspace(1, 3, 6) x3 = B.linspace(2, 4, 7) y1, y2, y3 = m.sample(p1(x1), p2(x2), p3(x3)) # Test case that only one process is fed. approx(p1(x1).logpdf(y1), m.logpdf(p1(x1), y1)) approx(p1(x1).logpdf(y1), m.logpdf((p1(x1), y1))) # Compute the logpdf with the product rule. d1 = m d2 = d1 | (p1(x1), y1) d3 = d2 | (p2(x2), y2) approx( d1(p1)(x1).logpdf(y1) + d2(p2)(x2).logpdf(y2) + d3(p3)(x3).logpdf(y3), m.logpdf((p1(x1), y1), (p2(x2), y2), (p3(x3), y3)), ) # Check that `Measure.logpdf` allows `Obs` and `PseudoObs`. obs = Obs(p3(x3), y3) approx(m.logpdf(obs), p3(x3).logpdf(y3)) obs = PseudoObs(p3(x3), p3(x3, 1), y3) approx(m.logpdf(obs), p3(x3, 1).logpdf(y3))
def test_default_measure(): with Measure() as m1: p1 = GP(EQ()) with Measure() as m2: p2 = GP(EQ()) p3 = GP(EQ()) p4 = GP(EQ()) assert p1.measure is m1 assert p2.measure is m2 assert p3.measure is m1 assert p4.measure is not m1 assert p4.measure is not m2
def test_blr(): m = Measure() x = B.linspace(0, 10, 100) slope = GP(1, measure=m) intercept = GP(1, measure=m) f = slope * (lambda x: x) + intercept y = f + 1e-2 * GP(Delta(), measure=m) # Sample observations, true slope, and intercept. y_obs, true_slope, true_intercept = m.sample(y(x), slope(0), intercept(0)) # Predict. post = m | (y(x), y_obs) approx(post(slope)(0).mean, true_slope, atol=5e-2) approx(post(intercept)(0).mean, true_intercept, atol=5e-2)
def test_additive_model(): m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(EQ(), measure=m) p_sum = p1 + p2 x = B.linspace(0, 5, 10) y1 = p1(x).sample() y2 = p2(x).sample() # First, test independence: assert m.kernels[p2, p1] == ZeroKernel() assert m.kernels[p1, p2] == ZeroKernel() # Now run through some test cases: post = (m | (p1(x), y1)) | (p2(x), y2) approx(post(p_sum)(x).mean, y1 + y2) post = (m | (p2(x), y2)) | (p1(x), y1) approx(post(p_sum)(x).mean, y1 + y2) post = (m | (p1(x), y1)) | (p_sum(x), y1 + y2) approx(post(p2)(x).mean, y2) post = (m | (p_sum(x), y1 + y2)) | (p1(x), y1) approx(post(p2)(x).mean, y2) post = (m | (p2(x), y2)) | (p_sum(x), y1 + y2) approx(post(p1)(x).mean, y1) post = (m | (p_sum(x), y1 + y2)) | (p2(x), y2) approx(post(p1)(x).mean, y1)
def test_take_x(): m = Measure() f1 = GP(EQ()) f2 = GP(EQ()) k = MultiOutputKernel(m, f1) with pytest.raises(ValueError): _take_x(k, f2(B.linspace(0, 1, 10)), B.randn(10) > 0)
def test_manual_new_gp(): m = Measure() p1 = GP(1, EQ(), measure=m) p2 = GP(2, EQ(), measure=m) p_sum = p1 + p2 p1_equivalent = m.add_gp( m.means[p_sum] - m.means[p2], (m.kernels[p_sum] + m.kernels[p2] - m.kernels[p_sum, p2] - m.kernels[p2, p_sum]), lambda j: m.kernels[p_sum, j] - m.kernels[p2, j], ) x = B.linspace(0, 10, 5) s1, s2 = m.sample(p1(x), p1_equivalent(x)) approx(s1, s2, atol=1e-4)
def test_conditioning(generate_noise_tuple): m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(Exp(), measure=m) p_sum = p1 + p2 # Sample some data to condition on. x1 = B.linspace(0, 2, 3) n1 = generate_noise_tuple(x1) y1 = p1(x1, *n1).sample() tup1 = (p1(x1, *n1), y1) x_sum = B.linspace(3, 5, 3) n_sum = generate_noise_tuple(x_sum) y_sum = p_sum(x_sum, *n_sum).sample() tup_sum = (p_sum(x_sum, *n_sum), y_sum) # Determine FDDs to check. x_check = B.linspace(0, 5, 5) fdds_check = [ cross(p1, p2, p_sum)(x_check), p1(x_check), p2(x_check), p_sum(x_check), ] assert_equal_measures( fdds_check, m.condition(*tup_sum), m.condition(tup_sum), m | tup_sum, m | (tup_sum, ), m | Obs(*tup_sum), m | Obs(tup_sum), ) assert_equal_measures( fdds_check, m.condition(tup1, tup_sum), m | (tup1, tup_sum), m | Obs(tup1, tup_sum), ) # Check that conditioning gives an FDD and that it is consistent. post = m | tup1 assert isinstance(post(p1(x1, 0.1)), FDD) assert_equal_measures(post(p1(x1, 0.1)), post(p1)(x1, 0.1))
def test_sample_correct_measure(): m = Measure() p1 = GP(1, EQ(), measure=m) post = m | (p1(0), 1) # Test that `post.sample` indeed samples under `post`. approx(post.sample(10, p1(0)), B.ones(1, 10), atol=1e-4)
def test_multi_sample(): m = Measure() p1 = GP(1, 0, measure=m) p2 = GP(2, 0, measure=m) p3 = GP(3, 0, measure=m) x1 = B.linspace(0, 1, 5) x2 = B.linspace(0, 1, 10) x3 = B.linspace(0, 1, 15) s1, s2, s3 = m.sample(p1(x1), p2(x2), p3(x3)) assert B.shape(p1(x1).sample()) == s1.shape == (5, 1) assert B.shape(p2(x2).sample()) == s2.shape == (10, 1) assert B.shape(p3(x3).sample()) == s3.shape == (15, 1) approx(s1, 1 * B.ones(5, 1)) approx(s2, 2 * B.ones(10, 1)) approx(s3, 3 * B.ones(15, 1))
def test_approximate_multiplication(): m = Measure() p1 = GP(20, EQ(), measure=m) p2 = GP(20, EQ(), measure=m) p_prod = p1 * p2 # Sample functions. x = B.linspace(0, 10, 50) s1, s2 = m.sample(p1(x), p2(x)) # Perform product. post = m | ((p1(x), s1), (p2(x), s2)) approx(post(p_prod)(x).mean, s1 * s2, rtol=1e-2) # Perform division. cur_epsilon = B.epsilon B.epsilon = 1e-8 post = m | ((p1(x), s1), (p_prod(x), s1 * s2)) approx(post(p2)(x).mean, s2, rtol=1e-2) B.epsilon = cur_epsilon
def test_conditioning_consistency(): m = Measure() p = GP(EQ(), measure=m) e = GP(0.1 * Delta(), measure=m) e2 = GP(e.kernel, measure=m) x = B.linspace(0, 5, 10) y = (p + e)(x).sample() post1 = m | ((p + e)(x), y) post2 = m | (p(x, 0.1), y) assert_equal_measures([p(x), (p + e2)(x)], post1, post2) with pytest.raises(AssertionError): assert_equal_normals(post1((p + e)(x)), post2((p + e)(x)))
def test_stationarity(): m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(EQ().stretch(2), measure=m) p3 = GP(EQ().periodic(10), measure=m) p = p1 + 2 * p2 assert p.stationary p = p3 + p assert p.stationary p = p + GP(Linear(), measure=m) assert not p.stationary
def test_mo_batched(): x = B.randn(16, 10, 1) with Measure(): p = cross(GP(1, 2 * EQ().stretch(0.5)), GP(2, 2 * EQ().stretch(0.5))) y = p(x).sample() logpdf = p(x, 0.1).logpdf(y) assert B.shape(logpdf) == (16, ) assert B.shape(y) == (16, 20, 1) p = p | (p(x), y) y2 = p(x).sample() logpdf2 = p(x, 0.1).logpdf(y) assert B.shape(y2) == (16, 20, 1) assert B.shape(logpdf2) == (16, ) assert B.all(logpdf2 > logpdf) approx(y, y2, atol=1e-5)
def test_naming(): m = Measure() p1 = GP(EQ(), 1, measure=m) p2 = GP(EQ(), 2, measure=m) # Test setting and getting names. p1.name = "name" assert m["name"] is p1 assert p1.name == "name" assert m[p1] == "name" with pytest.raises(KeyError): m["other_name"] with pytest.raises(KeyError): m[p2] # Check that names can not be doubly assigned. def doubly_assign(): p2.name = "name" with pytest.raises(RuntimeError): doubly_assign() # Move name to other GP. p1.name = "other_name" p2.name = "name" # Check that everything has been properly assigned. assert m["name"] is p2 assert p2.name == "name" assert m[p2] == "name" assert m["other_name"] is p1 assert p1.name == "other_name" assert m[p1] == "other_name" # Test giving a name to the constructor. p3 = GP(EQ(), name="yet_another_name", measure=m) assert m["yet_another_name"] is p3 assert p3.name == "yet_another_name" assert m[p3] == "yet_another_name"
def test_mom(): x = B.linspace(0, 1, 10) prior = Measure() p1 = GP(lambda x: 2 * x, 1 * EQ(), measure=prior) p2 = GP(1, 2 * EQ().stretch(2), measure=prior) m = MultiOutputMean(prior, p1, p2) ms = prior.means # Check dimensionality. assert dimensionality(m) == 2 # Check representation. assert str(m) == "MultiOutputMean(<lambda>, 1)" # Check computation. approx(m(x), B.concat(ms[p1](x), ms[p2](x), axis=0)) approx(m(p1(x)), ms[p1](x)) approx(m(p2(x)), ms[p2](x)) approx(m((p2(x), p1(x))), B.concat(ms[p2](x), ms[p1](x), axis=0))
def test_measure_groups(): prior = Measure() f1 = GP(EQ(), measure=prior) f2 = GP(EQ(), measure=prior) assert f1._measures == f2._measures x = B.linspace(0, 5, 10) y = f1(x).sample() post = prior | (f1(x), y) assert f1._measures == f2._measures == [prior, post] # Further extend the prior. f_sum = f1 + f2 assert f_sum._measures == [prior, post] f3 = GP(EQ(), measure=prior) f_sum = f1 + f3 assert f3._measures == f_sum._measures == [prior] with pytest.raises(AssertionError): post(f1) + f3 # Extend the posterior. f_sum = post(f1) + post(f2) assert f_sum._measures == [post] f3 = GP(EQ(), measure=post) f_sum = post(f1) + f3 assert f3._measures == f_sum._measures == [post] with pytest.raises(AssertionError): f1 + f3
def test_formatting(): p = 2 * GP(1, EQ(), measure=Measure()) assert str(p.display(lambda x: x ** 2)) == "GP(4 * 1, 16 * EQ())"
def test_mok(): x1 = B.linspace(0, 1, 10) x2 = B.linspace(1, 2, 5) x3 = B.linspace(1, 2, 10) m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(2 * EQ().stretch(2), measure=m) k = MultiOutputKernel(m, p1, p2) ks = m.kernels # Check dimensionality. assert dimensionality(k) == 2 # Check representation. assert str(k) == "MultiOutputKernel(EQ(), 2 * (EQ() > 2))" # Input versus input: approx( k(x1, x2), B.concat2d( [ks[p1, p1](x1, x2), ks[p1, p2](x1, x2)], [ks[p2, p1](x1, x2), ks[p2, p2](x1, x2)], ), ) approx( k.elwise(x1, x3), B.concat(ks[p1, p1].elwise(x1, x3), ks[p2, p2].elwise(x1, x3), axis=0), ) # Input versus `FDD`: approx(k(p1(x1), x2), B.concat(ks[p1, p1](x1, x2), ks[p1, p2](x1, x2), axis=1)) approx(k(p2(x1), x2), B.concat(ks[p2, p1](x1, x2), ks[p2, p2](x1, x2), axis=1)) approx(k(x1, p1(x2)), B.concat(ks[p1, p1](x1, x2), ks[p2, p1](x1, x2), axis=0)) approx(k(x1, p2(x2)), B.concat(ks[p1, p2](x1, x2), ks[p2, p2](x1, x2), axis=0)) with pytest.raises(ValueError): k.elwise(x1, p2(x3)) with pytest.raises(ValueError): k.elwise(p1(x1), x3) # `FDD` versus `FDD`: approx(k(p1(x1), p1(x2)), ks[p1](x1, x2)) approx(k(p1(x1), p2(x2)), ks[p1, p2](x1, x2)) approx(k.elwise(p1(x1), p1(x3)), ks[p1].elwise(x1, x3)) approx(k.elwise(p1(x1), p2(x3)), ks[p1, p2].elwise(x1, x3)) # Multiple inputs versus input: approx( k((p2(x1), p1(x2)), x1), B.concat2d( [ks[p2, p1](x1, x1), ks[p2, p2](x1, x1)], [ks[p1, p1](x2, x1), ks[p1, p2](x2, x1)], ), ) approx( k(x1, (p2(x1), p1(x2))), B.concat2d( [ks[p1, p2](x1, x1), ks[p1, p1](x1, x2)], [ks[p2, p2](x1, x1), ks[p2, p1](x1, x2)], ), ) with pytest.raises(ValueError): k.elwise((p2(x1), p1(x3)), p2(x1)) with pytest.raises(ValueError): k.elwise(p2(x1), (p2(x1), p1(x3))) # Multiple inputs versus `FDD`: approx( k((p2(x1), p1(x2)), p2(x1)), B.concat(ks[p2, p2](x1, x1), ks[p1, p2](x2, x1), axis=0), ) approx( k(p2(x1), (p2(x1), p1(x2))), B.concat(ks[p2, p2](x1, x1), ks[p2, p1](x1, x2), axis=1), ) with pytest.raises(ValueError): k.elwise((p2(x1), p1(x3)), p2(x1)) with pytest.raises(ValueError): k.elwise(p2(x1), (p2(x1), p1(x3))) # Multiple inputs versus multiple inputs: approx( k((p2(x1), p1(x2)), (p2(x1))), B.concat(ks[p2, p2](x1, x1), ks[p1, p2](x2, x1), axis=0), ) with pytest.raises(ValueError): k.elwise((p2(x1), p1(x3)), (p2(x1),)) approx( k.elwise((p2(x1), p1(x3)), (p2(x1), p1(x3))), B.concat(ks[p2, p2].elwise(x1, x1), ks[p1, p1].elwise(x3, x3), axis=0), )
def test_pseudo_conditioning_and_elbo(generate_noise_tuple): m = Measure() p1 = GP(EQ(), measure=m) p2 = GP(Exp(), measure=m) p_sum = p1 + p2 # Sample some data to condition on. x1 = B.linspace(0, 2, 3) n1 = generate_noise_tuple(x1) y1 = p1(x1, *n1).sample() tup1 = (p1(x1, *n1), y1) x_sum = B.linspace(3, 5, 3) n_sum = generate_noise_tuple(x_sum) y_sum = p_sum(x_sum, *n_sum).sample() tup_sum = (p_sum(x_sum, *n_sum), y_sum) # Determine FDDs to check. x_check = B.linspace(0, 5, 5) fdds_check = [ cross(p1, p2, p_sum)(x_check), p1(x_check), p2(x_check), p_sum(x_check), ] # Check conditioning and ELBO on one data set. assert_equal_measures( fdds_check, m | tup_sum, m | PseudoObs(p_sum(x_sum), *tup_sum), m | PseudoObs((p_sum(x_sum), ), *tup_sum), m | PseudoObs((p_sum(x_sum), p1(x1)), *tup_sum), m | PseudoObs(p_sum(x_sum), tup_sum), m | PseudoObs((p_sum(x_sum), ), tup_sum), m.condition(PseudoObs((p_sum(x_sum), p1(x1)), tup_sum)), ) approx( m.logpdf(Obs(*tup_sum)), PseudoObs(p_sum(x_sum), tup_sum).elbo(m), ) # Check conditioning and ELBO on two data sets. assert_equal_measures( fdds_check, m | (tup_sum, tup1), m.condition(PseudoObs((p_sum(x_sum), p1(x1)), tup_sum, tup1)), ) approx( m.logpdf(Obs(tup_sum, tup1)), PseudoObs((p_sum(x_sum), p1(x1)), tup_sum, tup1).elbo(m), ) # The following lose information, so check them separately. assert_equal_measures( fdds_check, m | PseudoObs(p_sum(x_sum), tup_sum, tup1), m | PseudoObs((p_sum(x_sum), ), tup_sum, tup1), ) # Test caching. for name in ["K_z", "elbo", "mu", "A"]: obs = PseudoObs(p_sum(x_sum), *tup_sum) assert getattr(obs, name)(m) is getattr(obs, name)(m) # Test requirement that noise must be diagonal. with pytest.raises(RuntimeError): PseudoObs(p_sum(x_sum), (p_sum(x_sum, p_sum(x_sum).var), y_sum)).elbo(m) # Test that noise on inducing points loses information. with pytest.raises(AssertionError): assert_equal_measures( fdds_check, m | tup_sum, m | PseudoObs(p_sum(x_sum, 0.1), *tup_sum), )