Exemplo n.º 1
0
 def roi(self, df=None, days=1):
     if df is None:
         return sheep.wool2(self.data,
                            self.raw_data,
                            PRICEB=self.PRICEB,
                            PRICES=self.PRICES,
                            days=days)
     return sheep.wool2(df,
                        self.raw_data,
                        PRICEB=self.PRICEB,
                        PRICES=self.PRICES,
                        days=days)
Exemplo n.º 2
0
def line_stock():
    raw_data=read_data('daily',start_date=start_date,end_date=end_date)
    data=raw_data.loc[raw_data['low']==raw_data['high']]
    print(data.shape)

    list_days=basic().list_days(data)
    print(list_days.shape)
    data=data.merge(list_days,on=['ts_code','trade_date'])
    res1=sheep.wool2(data.loc[data['pct_chg']>0],raw_data,)
    res2=sheep.wool2(data.loc[data['pct_chg']<0],raw_data)
    print(res1.describe())
    print(res2.describe())
    print()
Exemplo n.º 3
0
def buy_model(red_line,raw_data):
    res=[]
    # 单独处理涨跌停数据
    # 做切分处理,如果满足rate*pre_close>low,卖出,否则delete
    pre_date=basic().pre_date(red_line[['trade_date']],days=-1)
    red_line=red_line.merge(pre_date,on=['trade_date'])
    red_line['trade_date']=red_line['pre_-1_date']
    red_line.drop(['pre_-1_date'],axis=1,inplace=True)
    print(red_line.shape)
    red_line=red_line.iloc[:,:2].merge(raw_data.iloc[:,:11],on=['ts_code','trade_date'])
    red_line['low_pct']=100*(red_line['low']/red_line['pre_close']-1)
    for cut in (['down']+list(range(-8,10,2))+['up']):
        data=raw_data.iloc[:,:11].copy()

        if cut=='down':
            buy_data=red_line.loc[red_line['low']==red_line['down_limit']].copy()
            PB='down_limit'
        elif cut=='up':
            buy_data=red_line.loc[red_line['low']==red_line['up_limit']].copy()
            PB='up_limit'

        else:
            buy_data=red_line.loc[cut>red_line['low_pct']].copy()
            data['PB']=data['pre_close']*(1+0.01*cut)
            PB='PB'
        if buy_data.empty:
            continue
        print(cut)
        roi=sheep.wool2(buy_data,data,PRICEB=PB)
        res.append([cut,roi.shape[0],roi.iloc[-1,-1]])
        res=pd.DataFrame(res,columns=['cut','n_days','pct'])
        return res
Exemplo n.º 4
0
def roi(data,rawdata):
    summary=pd.DataFrame()
    print(data.shape[0])
    all_data = rawdata.copy()
    for pctb in range(-10,11,2):

        if pctb==-10:
            all_data['price_buy']=all_data['down_limit']
        elif pctb==10:
            all_data['price_buy']=all_data['up_limit']
        else:

            all_data['price_buy']=all_data['pre_close']*(1+0.01*pctb)

        for pcts in range(-10,11,2):
            if pcts == -10:
                all_data['price_sell'] = all_data['down_limit']
            elif pcts == 10:
                all_data['price_sell'] = all_data['up_limit']
            else:
                all_data['price_sell'] = all_data['pre_close']*(1+0.01*pctb)
            all_data=all_data.loc[(all_data['price_buy']>=all_data['low'])&(all_data['price_sell']<=all_data['high'])]

            res=sheep.wool2(data,all_data,PRICEB='price_buy',PRICES='price_sell')
            detail=pd.DataFrame({'buy':{pctb},'sell':{pcts},'day':{res.shape[0]},'n':{res['n'].sum()},'pct_avg':{res['pct'].mean()},'pct_all':{res.iloc[-1,-1]}})
            summary=pd.concat([summary,detail],ignore_index=True)
            print()
Exemplo n.º 5
0
def fun1(limit_type='up'):
    res = pd.DataFrame()
    #
    data = read_data('daily', start_date=start_date, end_date=end_date)
    limit = read_data('stk_limit', start_date=start_date, end_date=end_date)
    data = data.merge(limit, on=['ts_code', 'trade_date'])
    data['is_roof'] = data.apply(
        lambda x: 99 if x['close'] == x['up_limit'] else 1
        if x['close'] == x['down_limit'] else x['pct_chg'],
        axis=1)
    for rate in [-99] + list(range(-10, 10)) + [99]:
        print(rate)
        df = data.loc[(data['is_roof'] >= rate)
                      & (data['is_roof'] < (rate + 1))].copy()
        if df.empty:
            continue
        # df['pct']=(df['close']/df['open']-1)*100
        # res.loc[rate,'pct']=df['pct'].mean()
        wool = sheep.wool2(df[['ts_code', 'trade_date']],
                           data,
                           PRICEB=PRICEB,
                           days=1)
        res.loc[rate, 'mean'] = wool.iloc[:, -3].mean()
        res.loc[rate, 'n'] = wool.iloc[-1, -2]
        res.loc[rate, 'all_pct'] = wool.iloc[-1, -1]

    save_data(res, 'pct_chg_cut_res%s-%s.csv' % (start_date, end_date))
Exemplo n.º 6
0
Arquivo: FLUP.py Projeto: swq90/stock
def pro(start_date=None, end_date=None, limit_type='up', days=2):
    data = gls.first_limit(start_date=start_date,
                           end_date=end_date,
                           limit_type=limit_type,
                           days=days)
    data = data.loc[(data['pct_chg'] >= -11) & (data['pct_chg'] <= 11)]
    fl = data.loc[(data['pre_1_is_roof'] == 1) & (data['pre_2_is_roof'] == 0)]
    return sheep.wool2(fl, fl, days=0, PRICEB='open', PRICES='close')
Exemplo n.º 7
0
    def next_performance(self,data,PRICEBUY='close',PRICESELL='close',days=1):
        res=pd.DataFrame()

        for d in range(1, days):
            wool=sheep.wool2(data,self.raw_data,PRICEB=PRICEBUY,PRICES=PRICESELL,days=d)
            res['%spct' % d] = wool['pct']
            res['%sall_pct' % d] = wool['all_pct']
        res['n']=wool['n']
        return res.iloc[:-days,:]
Exemplo n.º 8
0
def verify(up,data):
    t1 = datetime.datetime.now()
    s1=sheep.wool(up,data)
    t2= datetime.datetime.now()
    s2=sheep.wool2(up,data)
    t3 = datetime.datetime.now()

    s1.to_csv('s1.csv')
    s2.to_csv('s2.csv')

    print()
Exemplo n.º 9
0
def roi(red_line,
        raw_data,
        cut_left=-24,
        cut_right=24,
        step=2,
        selling_price=selling):
    res = []
    section = list(range(cut_left, cut_right, 2))
    # red_line['low_pct']=100*(red_line['low']/red_line['pre_close']-1)
    raw_data = raw_data.loc[raw_data['ts_code'].isin(red_line['ts_code'])]
    for pb in section:
        if red_line.empty:
            continue
        PB = 'PB'
        red_line.loc[:, PB] = red_line['open'] * (1 + 0.01 * pb)
        raw_data.loc[:, PB] = raw_data['open'] * (1 + 0.01 * pb)
        grass = red_line.loc[(red_line[PB] >= red_line['low'])].copy()
        if grass.empty:
            continue
        raw_data.loc[:, PB] = raw_data.apply(lambda x: x['open']
                                             if pb >= 0 else x[PB]
                                             if x[PB] >= x['low'] else None,
                                             axis=1)

        # for ps in section:
        #     if ps not in raw_data.columns:
        #         if isinstance(ps,int):
        #             PS = 'PS'
        #             raw_data[PS] = raw_data['pre_close'] * (1 + 0.01 * ps)
        #     else:
        #         PS=ps
        #
        #     # raw_data[PS]=raw_data.apply(lambda x:x[PS] if x[PS]<=x['high'] else x['close'],axis=1)
        #     # 集合竞价中,价格低于open,卖出,否则,价格小于当天最高价卖出,否则收盘价卖出
        #     # raw_data[PS]=raw_data.apply(lambda x:x['open'] if x[PS]<=x['open'] else x['up_limit'] if x[PS]>=x['up_limit'] else x[PS] if x[PS]<=x['high'] else x['close'],axis=1)
        #
        #
        #     meat=sheep.wool2(grass,raw_data,PRICEB=PB,PRICES=PS).dropna()
        #     if meat.empty:
        #         continue
        #     res.append([pb,ps,meat.shape[0],meat.iloc[-1,-1]])
        meat = sheep.wool2(grass, raw_data, PRICEB=PB,
                           PRICES=selling_price).dropna()
        if meat.empty:
            continue
        # grass_count=grass.groupby('trade_date')['trade_date'].count().reset_index()
        res.append([pb, meat.shape[0], meat['n'].sum(), meat.iloc[-1, -1]])

    res = pd.DataFrame(res, columns=['pb', 'n_days', 'num', 'pct'])
    return res
Exemplo n.º 10
0
disclosure=ts.pro_api().disclosure_date(end_date=need_date,fields='ts_code,ann_date,end_date,pre_date,actual_date,modify_date')
# 解禁
# share_float=ts.pro_api().share_float(ts_code='300617.SZ' )
# 分红送股
dividend=ts.pro_api().dividend()
dividend=dividend.loc['dividend'].[]
disclosure=disclosure.loc[(disclosure['pre_date']>=need_date)&(disclosure['pre_date']<=end_date)].copy()
# print(disclosure.shape,disclosure['ts_code'].unique().shape)
data=read_data('daily',start_date=buy_date,end_date=end_date)
# disclosure

res=pd.DataFrame()
for ts_code in disclosure['ts_code'].unique():
    df=data.loc[data['ts_code']==ts_code].copy()
    df.sort_values('trade_date',inplace=True)
    df['buy_date']=df['trade_date'].shift(5)
    df['buy_price']=df['close'].shift(5)
    res=pd.concat([res,df],ignore_index=True)

disclosure['trade_date']=disclosure['pre_date']
disclosure.sort_values('trade_date',ascending=False,inplace=True)
print(disclosure.shape)
disclosure=disclosure[['ts_code','trade_date']].drop_duplicates()
print(disclosure.shape,disclosure['ts_code'].unique().shape)
sheep.wool2(disclosure,res,PRICEB='buy_price')
print()