Exemplo n.º 1
0
def plotUniqueGreenSeries():
    '''
    '''
    # Unique green series plot
    fig1 = plt.figure()
    fig2 = plt.figure()
    fig1.set_tight_layout(True)
    fig2.set_tight_layout(True)
    ax1 = fig1.add_subplot(111)
    ax2 = fig2.add_subplot(111)
    pf.AxisFormat()
    pf.TufteAxis(ax1, ['left', 'bottom'], Nticks=[5, 5])
    pf.TufteAxis(ax2, ['left', 'bottom'], Nticks=[5, 5])

    for j in [0.04, 0.34, 0.94, 2, 4, 6]:
        stage2, stage3 = genStockmanAnalysis(spectrum, filters, Lnorm,
            Mnorm, Snorm, j)
        ax1.plot(spectrum, stage3['blue'], c='b', alpha=0.7)

    for j in np.arange(0.1, 5, 0.75):
        ax2.plot(spectrum, Snorm - (j / 10 * (Lnorm + (0.5 * Mnorm))), 
            c='b', alpha=0.7)

    ax1.plot(spectrum, np.zeros(len(spectrum)), 'k',
        linewidth=1)
    ax2.plot(spectrum, np.zeros(len(spectrum)), 'k',
        linewidth=1)
    ax1.set_xlim([spectrum[0], 650])
    ax1.set_ylim([-0.7, 1.4])
    ax1.set_xlabel('wavelength (nm)')
    ax1.set_ylabel('sensitivity')

    ax2.set_xlim([spectrum[0], 700])
    ax2.set_ylim([-0.9, 1.2])
    ax2.set_xlabel('wavelength (nm)')
    ax2.set_ylabel('sensitivity')

    plt.show()
Exemplo n.º 2
0
import numpy as np

from base import optics as op
from base import plot as pf
from stockmanModel import genStockmanAnalysis
from genLMS import genLMS


maxLambda = 770
filters, spectrum = op.filters.stockman(minLambda=390, 
    maxLambda=maxLambda, RETURN_SPECTRUM=True, 
    resolution=1)
Lnorm, Mnorm, Snorm = genLMS(spectrum, filters, 
    fundamental='stockspecsens', LMSpeaks=[559, 530, 421])

stage2, stage3 = genStockmanAnalysis(spectrum, filters, Lnorm,
    Mnorm, Snorm)

def plotStage2Stockman():
    '''
    '''
    fig = plt.figure()
    fig.set_tight_layout(True)
    ax = fig.add_subplot(111)
    pf.AxisFormat()
    pf.TufteAxis(ax, ['left', 'bottom'], Nticks=[5, 5])
    for key in stage2:
        ax.plot(spectrum, stage2[key])

    ax.set_xlim([spectrum[0], spectrum[-1]])
    ax.set_xlabel('wavelength (nm)')
    ax.set_ylabel('sensitivity')