Exemplo n.º 1
0
def gen_sine_sine():
    t = np.linspace(1.0,12*np.pi,400)
    x1 = 100*t
    y1 = 200*np.sin(t)
    # each 2*pi, the radius gets bigger by exp(2pi*b)
    x2 = x1
    y2 = y1+50
    # now perturb both sides, but keep amplitude < 20
    y1 = y1 + 20*np.sin(10*t)
    y2 = y2 + 10*np.cos(5*t)
    
    x = np.concatenate( (x1,x2[::-1]) )
    y = np.concatenate( (y1,y2[::-1]) )

    shore = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1)
    rings = [shore]

    # and make some islands:
    north_island_shore = 0.4*y1 + 0.6*y2
    south_island_shore = 0.6*y1 + 0.4*y2

    Nislands = 20
    # islands same length as space between islands, so divide
    # island shorelines into 2*Nislands blocks
    for i in range(Nislands):
        i_start = int( (2*i+0.5)*len(t)/(2*Nislands) )
        i_stop =  int( (2*i+1.5)*len(t)/(2*Nislands) )
        
        north_y = north_island_shore[i_start:i_stop]
        south_y = south_island_shore[i_start:i_stop]
        north_x = x1[i_start:i_stop]
        south_x = x2[i_start:i_stop]
        
        x = np.concatenate( (north_x,south_x[::-1]) )
        y = np.concatenate( (north_y,south_y[::-1]) )
        island = np.swapaxes( np.concatenate( (x[None,:],y[None,:]) ), 0,1)

        rings.append(island)

    density = field.ConstantField(25.0)
    min_density = field.ConstantField(2.0)
    p = paver.Paving(rings,density=density,min_density=min_density)
    
    print("Smoothing to nominal 1.0m")
    # mostly just to make sure that long segments are
    # sampled well relative to the local feature scale.
    p.smooth() 

    print("Adjusting other densities to local feature size")
    p.telescope_rate=1.1
    p.adjust_density_by_apollonius()

    return p
Exemplo n.º 2
0
def test_embedded_channel():
    assert False  # no API yet.
    # trying out degenerate internal lines - the trick may be mostly in
    # how to specify them.
    # make a large rectangle, with a sinuous channel in the middle
    L = 500.0
    W = 300.0

    rect = np.array([[0, 0], [L, 0], [L, W], [0, W]])

    x = np.linspace(0.1 * L, 0.9 * L, 50)
    y = W / 2 + 0.1 * W * np.cos(4 * np.pi * x / L)
    shore = np.swapaxes(np.concatenate((x[None, :], y[None, :])), 0, 1)

    density = field.ConstantField(10)

    # this will probably get moved into Paver itself.
    # Note closed_ring=0 !
    shore = resample_linearring(shore, density, closed_ring=0)

    south_shore = shore - np.array([0, 0.1 * W])
    north_shore = shore + np.array([0, 0.1 * W])

    p = paver.Paving([rect], density, degenerates=[north_shore, south_shore])
    p.pave_all()
Exemplo n.º 3
0
def test_long_channel():
    l = 2000
    w = 50
    long_channel = np.array([[0, 0], [l, 0], [l, w], [0, w]], np.float64)

    density = field.ConstantField(19.245)
    trifront_wrapper([long_channel], density, label='long_channel')
Exemplo n.º 4
0
def test_tight_with_island():
    # build a peanut first:
    r = 100
    thetas = np.linspace(0, 2 * np.pi, 250)
    peanut = np.zeros((len(thetas), 2), np.float64)
    x = r * np.cos(thetas)
    y = r * np.sin(thetas) * (0.9 / 10000 * x * x + 0.05)
    peanut[:, 0] = x
    peanut[:, 1] = y

    # put two holes into it
    thetas = np.linspace(0, 2 * np.pi, 30)

    hole1 = np.zeros((len(thetas), 2), np.float64)
    hole1[:, 0] = 10 * np.cos(thetas) - 75
    hole1[:, 1] = 10 * np.sin(thetas)

    hole2 = np.zeros((len(thetas), 2), np.float64)
    hole2[:, 0] = 20 * np.cos(thetas) + 75
    hole2[:, 1] = 20 * np.sin(thetas)

    rings = [peanut, hole1, hole2]

    density = field.ConstantField(6.0)
    trifront_wrapper(rings, density, label='tight_with_island')
Exemplo n.º 5
0
def test_pave_quad():
    # Define a polygon
    rings = [np.array([[0, 0], [1000, 0], [1000, 1000], [0, 1000]])]
    # And the scale:
    scale = field.ConstantField(50)

    return trifront_wrapper(rings, scale, label='quad')
Exemplo n.º 6
0
def test_sine_sine():
    rings = sine_sine_rings()
    density = field.ConstantField(25.0)

    if 0:  # no support for min_density yet
        min_density = field.ConstantField(2.0)

    # mostly just to make sure that long segments are
    # sampled well relative to the local feature scale.
    if 0:  # no support yet
        p.smooth()

        print("Adjusting other densities to local feature size")
        p.telescope_rate = 1.1
        p.adjust_density_by_apollonius()

    trifront_wrapper(rings, density, label='sine_sine')
Exemplo n.º 7
0
def test_long_channel():
    l = 2000
    w = 50
    long_channel = np.array([[0, 0], [l, 0], [l, w], [0, w]], np.float64)

    density = field.ConstantField(19.245)
    p = paver.Paving(long_channel, density)
    p.pave_all()
Exemplo n.º 8
0
def test_dumbarton():
    shp=os.path.join( os.path.dirname(__file__), 'data','dumbarton.shp')
    features=wkb2shp.shp2geom(shp)
    geom = features['geom'][0]
    dumbarton = np.array(geom.exterior)
    density = field.ConstantField(250.0)
    p=paver.Paving(dumbarton, density,label='dumbarton')
    p.pave_all()
Exemplo n.º 9
0
def test_cul_de_sac():
    r = 5
    theta = np.linspace(-np.pi / 2, np.pi / 2, 20)
    cap = r * np.swapaxes(np.array([np.cos(theta), np.sin(theta)]), 0, 1)
    box = np.array([[-3 * r, r], [-4 * r, -r]])
    ring = np.concatenate((box, cap))

    density = field.ConstantField(2 * r / (np.sqrt(3) / 2))
    trifront_wrapper([ring], density, label='cul_de_sac')
Exemplo n.º 10
0
def test_narrow_channel():
    l = 1000
    w = 50
    long_channel = np.array([[0, 0], [l, 0.375 * w], [l, 0.625 * w], [0, w]],
                            np.float64)

    density = field.ConstantField(w / np.sin(60 * np.pi / 180.) / 4)
    p = paver.Paving(long_channel, density)
    p.pave_all()
Exemplo n.º 11
0
def test_pave_basic():
    # big square with right triangle inside
    # Define a polygon
    boundary = np.array([[0, 0], [1000, 0], [1000, 1000], [0, 1000]])
    island = np.array([[200, 200], [600, 200], [200, 600]])
    rings = [boundary, island]
    # And the scale:
    scale = field.ConstantField(50)

    return trifront_wrapper(rings, scale, label='basic_island')
Exemplo n.º 12
0
def test_tight_peanut():
    r = 100
    thetas = np.linspace(0, 2 * np.pi, 300)
    peanut = np.zeros((len(thetas), 2), np.float64)
    x = r * np.cos(thetas)
    y = r * np.sin(thetas) * (0.9 / 10000 * x * x + 0.05)
    peanut[:, 0] = x
    peanut[:, 1] = y
    density = field.ConstantField(6.0)
    trifront_wrapper([peanut], density, label='tight_peanut')
Exemplo n.º 13
0
def test_bow():
    x = np.linspace(-100, 100, 50)
    # with /1000 it seems to do okay
    # with /500 it still looks okay
    y = x**2 / 250.0
    bow = np.swapaxes(np.concatenate((x[None, :], y[None, :])), 0, 1)
    height = np.array([0, 20])
    ring = np.concatenate((bow + height, bow[::-1] - height))
    density = field.ConstantField(2)
    trifront_wrapper([ring], density, label='bow')
Exemplo n.º 14
0
def test_long_channel_rigid():
    l = 2000
    w = 50
    long_channel = np.array([[0, 0], [l, 0], [l, w], [0, w]], np.float64)

    density = field.ConstantField(19.245)
    p = paver.Paving(long_channel,
                     density,
                     initial_node_status=paver.Paving.RIGID)
    p.pave_all()
Exemplo n.º 15
0
def test_narrow_channel():
    # This passes now, but the result looks like it could use better
    # tuning of the parameters -- grid jumps from 1 to 3 cells across
    # the channel.
    l = 1000
    w = 50
    long_channel = np.array([[0, 0], [l, 0.375 * w], [l, 0.625 * w], [0, w]],
                            np.float64)

    density = field.ConstantField(w / np.sin(60 * np.pi / 180.) / 4)
    trifront_wrapper([long_channel], density, label='narrow_channel')
Exemplo n.º 16
0
def test_long_channel_rigid():
    assert False  # no RIGID initialization yet
    l = 2000
    w = 50
    long_channel = np.array([[0, 0], [l, 0], [l, w], [0, w]], np.float64)

    density = field.ConstantField(19.245)
    trifront_wrapper([long_channel],
                     density,
                     initial_node_status=paver.Paving.RIGID,
                     label='long_channel_rigid')
Exemplo n.º 17
0
def test_tight_peanut():
    r = 100
    thetas = np.linspace(0,2*np.pi,300)
    peanut = np.zeros( (len(thetas),2), np.float64)
    x = r*np.cos(thetas)
    y = r*np.sin(thetas) * (0.9/10000 * x*x + 0.05)
    peanut[:,0] = x
    peanut[:,1] = y
    density = field.ConstantField( 6.0 )
    p=paver.Paving(peanut,density,label='tight_peanut')
    p.pave_all()
Exemplo n.º 18
0
def test_expansion():
    # 40: too close to a 120deg angle - always bisect on centerline
    # 30: rows alternate with wall and bisect seams
    # 35: starts to diverge, but recovers.
    # 37: too close to 120.
    d = 36
    pnts = np.array([[0., 0.], [100, -d], [200, 0], [200, 100], [100, 100 + d],
                     [0, 100]])

    density = field.ConstantField(6)
    trifront_wrapper([pnts], density, label='expansion')
Exemplo n.º 19
0
def test_peninsula():
    r = 100
    thetas = np.linspace(0, 2 * np.pi, 1000)
    pen = np.zeros((len(thetas), 2), np.float64)

    pen[:, 0] = r * (0.2 + np.abs(np.sin(2 * thetas))**0.2) * np.cos(thetas)
    pen[:, 1] = r * (0.2 + np.abs(np.sin(2 * thetas))**0.2) * np.sin(thetas)

    density = field.ConstantField(10.0)
    pen2 = upsample_linearring(pen, density)

    trifront_wrapper([pen2], density, label='peninsula')
Exemplo n.º 20
0
def test_basic_setup():
    boundary=hex_curve()
    af=front.AdvancingTriangles()
    scale=field.ConstantField(3)

    af.add_curve(boundary)
    af.set_edge_scale(scale)

    # create boundary edges based on scale and curves:
    af.initialize_boundaries()

    return af
Exemplo n.º 21
0
def test_basic():
    # Define a polygon
    boundary=np.array([[0,0],[1000,0],[1000,1000],[0,1000]])
    island  =np.array([[200,200],[600,200],[200,600]])

    rings=[boundary,island]

    # And the scale:
    scale=field.ConstantField(50)

    p=paver.Paving(rings=rings,density=scale)

    p.pave_all()
Exemplo n.º 22
0
def test_curve_upsample():
    boundary = hex_curve()
    scale = field.ConstantField(3)

    pnts, dists = boundary.upsample(scale, return_sources=True)

    if plt:
        plt.clf()
        line = boundary.plot()
        plt.setp(line, lw=0.5, color='0.5')

        #f=np.linspace(0,crv.total_distance(),25)
        #crvX=crv(f)
        plt.scatter(pnts[:, 0], pnts[:, 1], 30, dists, lw=0)
Exemplo n.º 23
0
def test_small_island():
    l = 100
    square = np.array([[0, 0], [l, 0], [l, l], [0, l]], np.float64)

    r = 10
    theta = np.linspace(0, 2 * np.pi, 30)
    circle = r / np.sqrt(2) * np.swapaxes(
        np.array([np.cos(theta), np.sin(theta)]), 0, 1)
    island1 = circle + np.array([45, 45])
    island2 = circle + np.array([65, 65])
    island3 = circle + np.array([20, 80])
    rings = [square, island1, island2, island3]

    density = field.ConstantField(10)
    trifront_wrapper(rings, density, label='small_island')
Exemplo n.º 24
0
def test_ngon(nsides=7):
    # hexagon works ok, though a bit of perturbation
    # septagon starts to show expansion issues, but never pronounced
    # octagon - works fine.
    theta = np.linspace(0, 2 * np.pi, nsides + 1)[:-1]

    r = 100

    x = r * np.cos(theta)
    y = r * np.sin(theta)

    poly = np.swapaxes(np.concatenate((x[None, :], y[None, :])), 0, 1)

    density = field.ConstantField(6)
    trifront_wrapper([poly], density, label='ngon%02d' % nsides)
Exemplo n.º 25
0
def test_free_span():
    r = 5
    theta = np.linspace(-np.pi / 2, np.pi / 2, 20)
    cap = r * np.swapaxes(np.array([np.cos(theta), np.sin(theta)]), 0, 1)
    box = np.array([[-3 * r, r], [-4 * r, -r]])
    ring = np.concatenate((box, cap))

    density = field.ConstantField(2 * r / (np.sqrt(3) / 2))
    af = front.AdvancingTriangles()
    af.set_edge_scale(density)

    af.add_curve(ring, interior=False)
    af.initialize_boundaries()

    # N.B. this edge is not given proper cell neighbors
    af.grid.add_edge(nodes=[22, 3])

    af.plot_summary()

    he = af.grid.nodes_to_halfedge(4, 5)
    span_dist, span_nodes = af.free_span(he, 25, 1)
    assert span_nodes[-1] != 4
Exemplo n.º 26
0
def test_basic_setup():
    boundary = hex_curve()
    af = front.AdvancingTriangles()
    scale = field.ConstantField(3)

    af.add_curve(boundary)
    af.set_edge_scale(scale)

    # create boundary edges based on scale and curves:
    af.initialize_boundaries()

    if 0 and plt:
        plt.clf()
        g = af.grid
        g.plot_edges()
        g.plot_nodes()

        #
        coll = g.plot_halfedges(values=g.edges['cells'])
        coll.set_lw(0)
        coll.set_cmap('winter')

    return af
Exemplo n.º 27
0
##

plt.figure(3).clf()
fig, ax = plt.subplots(1, 1, num=3)

scat = ax.scatter(cutoff_xyz[:, 0], cutoff_xyz[:, 1], 20, cutoff_xyz[:, 2])
plot_wkb.plot_wkb(total_poly, zorder=-2)

ax.axis('equal')

##
from stompy.spatial import field
from stompy.grid import paver
six.moves.reload_module(paver)

p = paver.Paving(geom=total_poly, density=field.ConstantField(Lres))
p.verbose = 1
p.pave_all()

##

# But better to just use a subset of the existing grid.
select = g.select_nodes_intersecting(total_poly)

g_sub = g.copy()

for n in np.nonzero(~select)[0]:
    g_sub.delete_node_cascade(n)
g_sub.renumber()
g_sub.orient_edges()
Exemplo n.º 28
0
def triangulate_hole(grid,seed_point,max_nodes=5000):
    # manually tell it where the region to be filled is.
    # 5000 ought to be plenty of nodes to get around this loop
    nodes=grid.enclosing_nodestring(seed_point,max_nodes)
    xy_shore=grid.nodes['x'][nodes]

    # Construct a scale based on existing spacing
    # But only do this for edges that are part of one of the original grids
    grid.edge_to_cells() # update edges['cells']
    sample_xy=[]
    sample_scale=[]
    ec=grid.edges_center()
    el=grid.edges_length()

    for na,nb in utils.circular_pairs(nodes):
        j=grid.nodes_to_edge([na,nb])
        if np.any( grid.edges['cells'][j] >= 0 ):
            sample_xy.append(ec[j])
            sample_scale.append(el[j])

    sample_xy=np.array(sample_xy)
    sample_scale=np.array(sample_scale)

    apollo=field.PyApolloniusField(X=sample_xy,F=sample_scale)

    # Prepare that shoreline for grid generation.

    grid_to_pave=unstructured_grid.UnstructuredGrid(max_sides=6)

    AT=front.AdvancingTriangles(grid=grid_to_pave)

    AT.add_curve(xy_shore)
    # This should be safe about not resampling existing edges
    AT.scale=field.ConstantField(50000)

    AT.initialize_boundaries()

    AT.grid.nodes['fixed'][:]=AT.RIGID
    AT.grid.edges['fixed'][:]=AT.RIGID

    # Old code compared nodes to original grids to figure out RIGID
    # more general, if it works, to see if a node participates in any cells.
    # At the same time, record original nodes which end up HINT, so they can
    # be removed later on.
    src_hints=[]
    for n in AT.grid.valid_node_iter():
        n_src=grid.select_nodes_nearest(AT.grid.nodes['x'][n])
        delta=utils.dist( grid.nodes['x'][n_src], AT.grid.nodes['x'][n] )
        assert delta<0.1 # should be 0.0

        if len(grid.node_to_cells(n_src))==0:
            # It should be a HINT
            AT.grid.nodes['fixed'][n]=AT.HINT
            src_hints.append(n_src)
            # And any edges it participates in should not be RIGID either.
            for j in AT.grid.node_to_edges(n):
                AT.grid.edges['fixed'][j]=AT.UNSET

    AT.scale=apollo
    
    if AT.loop():
        AT.grid.renumber()
    else:
        print("Grid generation failed")
        return AT # for debugging -- need to keep a handle on this to see what's up.

    for n in src_hints:
        grid.delete_node_cascade(n)
        
    grid.add_grid(AT.grid)

    # Surprisingly, this works!
    grid.merge_duplicate_nodes()

    grid.renumber()

    return grid
Exemplo n.º 29
0
# New in v02:
# Apply a max filter across the DEM.

# for a 5m radius and 2m pixels, not much hope in really resolving
# a disc, but here goes
footprint = np.array([[0, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1],
                      [1, 1, 1, 1, 1], [0, 1, 1, 1, 0]])

##

# The real deal - update dem in place (in RAM, not on disk)
dem.F = ndimage.maximum_filter(dem.F, footprint=footprint)

##
res = field.ConstantField(5.0)  # target output linear resolution

# count total features so that files can be concatenated without issue.
total_count = 0

# no longer split by class, all filtering already complete in the input
# shapefile

g = unstructured_grid.UnstructuredGrid(extra_node_fields=[('elev_m', 'f8')],
                                       extra_edge_fields=[('mean_elev_m', 'f8')
                                                          ])

for ix, sel_i in enumerate(np.nonzero(sel)[0]):
    geom = inv['geom'][sel_i]
    coords = np.array(geom)
    # not 100% sure about whether it's necessary to test for closed_ring
Exemplo n.º 30
0
# Lagoon  (552129.3226207336, 552521.6926489467, 4124153.228958399, 4124603.800540797)
# The main issue was actually lagoon-lidar2017 above, which had too sharp of a transition
# Also decreased the feather on lagoon, and use min()
lagoon_dem = field.GdalGrid("lagoon-1m.tif")

params('lagoon',
       priority=85,
       src=lagoon_dem,
       data_mode='min()',
       alpha_mode='valid(),feather_in(10.0)',
       geom=field_bounds(lagoon_dem))

params('feeder_culvert',
       priority=95,
       src=field.ConstantField(0.6),
       alpha_mode='feather_in(3.0),feather_out(4.0)',
       data_mode='min()')

params('south_channel_culvert',
       priority=95,
       src=field.ConstantField(1.0),
       alpha_mode='feather_in(3.0)',
       data_mode='min()')

# a few survey points are 1.0.  With the blur_alpha(), as the polygon
# gets narrower the min depth is going to decrease, too.  The value
# of the ConstantField doesn't necessarily dictate the min depth.
params('north_ditch',
       priority=95,
       src=field.ConstantField(0.7),