def setUp(self):
        np.random.seed(2)
        n_points = 100
        normal_noise = np.random.normal(0, 1.0, n_points)
        points = np.linspace(0, 10, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([2.0]))
        self.sigma2 = ParameterEntity(SIGMA2_NAME, np.array([1.0]), None)
        kernel = ScaledKernel(1, kernel, self.sigma2)

        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]
        evaluations = function + normal_noise + 10.0
        self.training_data_gp = {
            "evaluations": list(evaluations),
            "points": points,
            "var_noise": []
        }
        bounds = None
        self.gp_gaussian = GPFittingGaussian([MATERN52_NAME],
                                             self.training_data_gp, [1],
                                             bounds,
                                             max_steps_out=1000)

        self.gp_gaussian_2 = GPFittingGaussian([SCALED_KERNEL, MATERN52_NAME],
                                               self.training_data_gp, [1],
                                               bounds,
                                               max_steps_out=1000)
    def test_cross_validation_mle_parameters(self):
        type_kernel = [MATERN52_NAME]

        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.01, n_points)
        points = np.linspace(0, 100, n_points)
        points = points.reshape([n_points, 1])

        kernel = Matern52.define_kernel_from_array(1, np.array([100.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]
        evaluations = function + normal_noise

        training_data = {
            "evaluations": evaluations,
            "points": points,
            "var_noise": None}

        dimensions = [1]
        problem_name = 'a'

        result = \
            ValidationGPModel.cross_validation_mle_parameters(type_kernel, training_data,
                                                              dimensions, problem_name,
                                                              start=np.array([0.01**2, 0.0, 100.0]))

        compare = 'results/diagnostic_kernel/a/validation_kernel_histogram_a_' + MATERN52_NAME + \
                  '_same_correlation_False_10_None.png'
        assert result['filename_histogram'] == compare
        assert np.all(result['y_eval'] == evaluations)
        assert result['n_data'] == n_points
        assert result['filename_plot'] == 'results/diagnostic_kernel/a/' \
                                          'validation_kernel_mean_vs_observations_a_' + \
                                          MATERN52_NAME + '_same_correlation_False_10_None' + '.png'
        assert result['success_proportion'] >= 0.9

        noise = np.random.normal(0, 0.000001, n_points)
        evaluations_noisy = evaluations + noise

        training_data_2 = {
            "evaluations": evaluations_noisy,
            "points": points,
            "var_noise": np.array(n_points * [0.000001**2])}

        result_2 = \
            ValidationGPModel.cross_validation_mle_parameters(type_kernel, training_data_2,
                                                              dimensions, problem_name,
                                                              start=np.array([0.01**2, 0.0, 100.0]))

        compare = 'results/diagnostic_kernel/a/validation_kernel_histogram_a_' + MATERN52_NAME + \
                  '_same_correlation_False_10_None.png'
        assert result_2['filename_histogram'] == compare
        assert np.all(result_2['y_eval'] == evaluations_noisy)
        assert result_2['n_data'] == n_points

        compare = 'results/diagnostic_kernel/a/validation_kernel_mean_vs_observations_a_' + \
                  MATERN52_NAME + '_same_correlation_False_10_None.png'
        assert result_2['filename_plot'] == compare
        assert result_2['success_proportion'] >= 0.9
Exemplo n.º 3
0
    def setUp(self):
        np.random.seed(5)
        n_points = 100
        points = np.linspace(0, 100, n_points)
        points = points.reshape([n_points, 1])
        tasks = np.random.randint(2, size=(n_points, 1))

        add = [-10, 10]
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        self.function = function

        for i in xrange(n_points):
            function[0, i] += add[tasks[i, 0]]
        points = np.concatenate((points, tasks), axis=1)
        self.points = points
        self.evaluations = function[0, :]

        function = function[0, :]

        training_data = {
            'evaluations': list(function),
            'points': points,
            "var_noise": [],
        }
        gaussian_p = GPFittingGaussian(
            [PRODUCT_KERNELS_SEPARABLE, MATERN52_NAME, TASKS_KERNEL_NAME],
            training_data, [2, 1, 2], bounds_domain=[[0, 100], [0, 1]], type_bounds=[0, 1])
        gaussian_p = gaussian_p.fit_gp_regression(random_seed=1314938)

        quadrature = BayesianQuadrature(gaussian_p, [0], UNIFORM_FINITE,
                                        parameters_distribution={TASKS: 2},
                                        model_only_x=True)
        self.mt = MultiTasks(quadrature, quadrature.parameters_distribution.get(TASKS))
    def test_cross_validation_mle_parameters_2(self):
        type_kernel = [MATERN52_NAME]

        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.01, n_points)
        points = np.linspace(0, 100, n_points)
        points = points.reshape([n_points, 1])

        kernel = Matern52.define_kernel_from_array(1, np.array([100.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]
        evaluations = function + normal_noise

        training_data = {
            "evaluations": evaluations,
            "points": points,
            "var_noise": None}

        dimensions = [1]
        problem_name = 'a'

        result = \
            ValidationGPModel.cross_validation_mle_parameters(type_kernel, training_data,
                                                              dimensions, problem_name,
                                                              start=np.array([-1]))
        assert result['success_proportion'] == -1
    def test_sample_new_observations(self):
        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.5, n_points)
        points = np.linspace(0, 500, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]
        evaluations = function + normal_noise

        training_data_gp = {
            "evaluations": list(evaluations[1:]),
            "points": points[1:, :],
            "var_noise": []}
        gp = GPFittingGaussian([MATERN52_NAME], training_data_gp, [1], kernel_values=[100.0, 1.0],
                               mean_value=[0.0], var_noise_value=[0.5**2])

        n_samples = 100
        samples = gp.sample_new_observations(np.array([[30.0]]), n_samples, random_seed=1)

        new_point = np.array([[30.0]])
        z = gp.compute_posterior_parameters(new_point)
        mean = z['mean']
        cov = z['cov']

        npt.assert_almost_equal(mean, np.mean(samples), decimal=1)
        npt.assert_almost_equal(cov, np.var(samples), decimal=1)
    def test_compute_posterior_parameters(self):
        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.5, n_points)
        points = np.linspace(0, 500, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]
        evaluations = function + normal_noise

        training_data_gp = {
            "evaluations": list(evaluations[1:]),
            "points": points[1:, :],
            "var_noise": []}
        gp = GPFittingGaussian([MATERN52_NAME], training_data_gp, [1], kernel_values=[100.0, 1.0],
                               mean_value=[0.0], var_noise_value=[0.5**2])

        new_point = np.array([points[0], points[1]])
        z = gp.compute_posterior_parameters(new_point)
        mean = z['mean']
        cov = z['cov']

        assert mean[1] - 2.0 * np.sqrt(cov[1, 1]) <= function[1]
        assert function[1] <= mean[1] + 2.0 * np.sqrt(cov[1, 1])
        assert mean[0] - 2.0 * np.sqrt(cov[0, 0]) <= function[0]
        assert function[0] <= mean[0] + 2.0 * np.sqrt(cov[0, 0])

        # Values obtained from GPy
        npt.assert_almost_equal(mean, np.array([0.30891226, 0.60256237]))
        npt.assert_almost_equal(cov, np.array([[0.48844879, 0.16799927], [0.16799927, 0.16536313]]))
    def test_train(self):
        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.5, n_points)
        points = np.linspace(0, 500, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]

        evaluations = function + normal_noise

        training_data_gp = {
            "evaluations": list(evaluations),
            "points": points,
            "var_noise": []}
        new_gp = GPFittingGaussian.train([MATERN52_NAME], [1], True, training_data_gp, None,
                                         random_seed=1314938)

        gp_gaussian = GPFittingGaussian([MATERN52_NAME], training_data_gp, [1])
        gp_2 = gp_gaussian.fit_gp_regression(random_seed=1314938)

        npt.assert_almost_equal(new_gp.var_noise.value[0], gp_2.var_noise.value[0], decimal=6)
        npt.assert_almost_equal(new_gp.mean.value[0], gp_2.mean.value[0], decimal=6)
        npt.assert_almost_equal(new_gp.kernel_values, gp_2.kernel_values)

        gp_gaussian = GPFittingGaussian([MATERN52_NAME], training_data_gp, [1])
        new_gp_2 = GPFittingGaussian.train([MATERN52_NAME], [1], False, training_data_gp, None)

        npt.assert_almost_equal(new_gp_2.var_noise.value[0], gp_gaussian.var_noise.value[0])
        npt.assert_almost_equal(new_gp_2.mean.value[0], gp_gaussian.mean.value[0], decimal=6)
        npt.assert_almost_equal(new_gp_2.kernel_values, gp_gaussian.kernel_values)
    def test_mle_parameters(self):
        # Results compared with the ones given by GPy

        np.random.seed(1)
        add = -45.946926660233636

        llh = self.gp_gaussian.log_likelihood(1.0, 0.0, np.array([100.0, 1.0]))
        npt.assert_almost_equal(llh + add, -59.8285565516, decimal=6)

        opt = self.gp_gaussian.mle_parameters(start=np.array([1.0, 0.0, 14.0, 0.9]))

        assert opt['optimal_value'] + add >= -67.1494227694

        compare = self.gp_gaussian.log_likelihood(9, 10.0, np.array([100.2, 1.1]))
        assert self.gp_gaussian_central.log_likelihood(9, 0.0, np.array([100.2, 1.1])) == compare

        np.random.seed(5)
        n_points = 10
        normal_noise = np.random.normal(0, 0.5, n_points)
        points = np.linspace(0, 500, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]

        evaluations = function + normal_noise

        training_data_gp = {
            "evaluations": list(evaluations),
            "points": points,
            "var_noise": []}

        gp_gaussian = GPFittingGaussian([MATERN52_NAME], training_data_gp, [1])

        opt_3 = gp_gaussian.mle_parameters(random_seed=1314938)
        np.random.seed(1314938)
        start = gp_gaussian.sample_parameters_posterior(1)[0, :]
        opt_4 = gp_gaussian.mle_parameters(start)

        npt.assert_almost_equal(opt_3['optimal_value'], opt_4['optimal_value'])
        npt.assert_almost_equal(opt_3['solution'], opt_4['solution'], decimal=4)
Exemplo n.º 9
0
from stratified_bayesian_optimization.util.json_file import JSONFile
from stratified_bayesian_optimization.kernels.matern52 import Matern52
from stratified_bayesian_optimization.lib.sample_functions import SampleFunctions

decimals = 10
random_seed = 5
np.random.seed(random_seed)
n_points = 1000
points = np.linspace(0, 100, n_points)
points = np.round(points, decimals=decimals)
points = points.reshape([n_points, 1])

tasks = np.array([[0, 1]])

add = [10, -10]
kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
function = SampleFunctions.sample_from_gp(points, kernel)
function = function[0, :]

final_function = {}

for task in range(2):
    final_function[task] = []
    for i in xrange(n_points):
        point = np.concatenate((points[i, :], np.array([task])))
        final_function[task].append(function[i] + add[task])

filename = path.join('problems', 'test_simulated_gp',
                     'simulated_function_with_%d_%d' % (n_points, random_seed))

JSONFile.write({'function': final_function, 'points': points}, filename)
    def setUp(self):
        type_kernel = [SCALED_KERNEL, MATERN52_NAME]
        self.training_data = {
            "evaluations":
                [42.2851784656, 72.3121248508, 1.0113231069, 30.9309246906, 15.5288331909],
            "points": [
                [42.2851784656], [72.3121248508], [1.0113231069], [30.9309246906], [15.5288331909]],
            "var_noise": []}
        dimensions = [1]

        self.gp = GPFittingGaussian(type_kernel, self.training_data, dimensions,
                                    bounds_domain=[[0, 100]])

        self.training_data_3 = {
            "evaluations": [42.2851784656, 72.3121248508, 1.0113231069, 30.9309246906,
                            15.5288331909],
            "points": [
                [42.2851784656], [72.3121248508], [1.0113231069], [30.9309246906], [15.5288331909]],
            "var_noise": [0.5, 0.8, 0.7, 0.9, 1.0]}

        self.gp_3 = GPFittingGaussian(type_kernel, self.training_data_3, dimensions,
                                      bounds_domain=[[0, 100]])
        self.training_data_simple = {
            "evaluations": [5],
            "points": [[5]],
            "var_noise": []}
        dimensions = [1]

        self.simple_gp = GPFittingGaussian(type_kernel, self.training_data_simple, dimensions,
                                           bounds_domain=[[0, 100]])

        self.training_data_complex = {
            "evaluations": [1.0],
            "points": [[42.2851784656, 0]],
            "var_noise": [0.5]}

        self.complex_gp = GPFittingGaussian(
            [PRODUCT_KERNELS_SEPARABLE, MATERN52_NAME, TASKS_KERNEL_NAME],
            self.training_data_complex, [2, 1, 1], bounds_domain=[[0, 100], [0]])

        self.training_data_complex_2 = {
            "evaluations": [1.0, 2.0, 3.0],
            "points": [[42.2851784656, 0], [10.532, 0], [9.123123, 1]],
            "var_noise": [0.5, 0.2, 0.1]}

        self.complex_gp_2 = GPFittingGaussian(
            [PRODUCT_KERNELS_SEPARABLE, MATERN52_NAME, TASKS_KERNEL_NAME],
            self.training_data_complex_2, [3, 1, 2], bounds_domain=[[0, 100], [0, 1]])

        self.new_point = np.array([[80.0]])
        self.evaluation = np.array([80.0])

        self.training_data_noisy = {
            "evaluations": [41.0101845096],
            "points": [[42.2851784656]],
            "var_noise": [0.0181073779]}

        self.gp_noisy = GPFittingGaussian(type_kernel, self.training_data_noisy, dimensions,
                                          bounds_domain=[[0, 100]])

        np.random.seed(2)
        n_points = 50
        normal_noise = np.random.normal(0, 0.5, n_points)
        points = np.linspace(0, 500, n_points)
        points = points.reshape([n_points, 1])
        kernel = Matern52.define_kernel_from_array(1, np.array([100.0, 1.0]))
        function = SampleFunctions.sample_from_gp(points, kernel)
        function = function[0, :]

        evaluations = function + normal_noise

        self.training_data_gp = {
            "evaluations": list(evaluations),
            "points": points,
            "var_noise": []}

        self.gp_gaussian = GPFittingGaussian([SCALED_KERNEL, MATERN52_NAME], self.training_data_gp,
                                             [1])

        self.gp_gaussian_2 = GPFittingGaussian([MATERN52_NAME], self.training_data_gp, [1],
                                               bounds_domain=[[0, 100]])

        self.training_data_gp_2 = {
            "evaluations": list(evaluations - 10.0),
            "points": points,
            "var_noise": []}
        self.gp_gaussian_central = GPFittingGaussian([SCALED_KERNEL, MATERN52_NAME],
                                                     self.training_data_gp_2, [1],
                                                     bounds_domain=[[0, 100]])