Exemplo n.º 1
0
    def compute(self, raw_records):

        # Convert everything to the records data type -- adds extra fields.
        records = strax.raw_to_records(raw_records)
        del raw_records

        # calculate baseline and baseline rms
        strax.baseline(records,
                       baseline_samples=self.config['baseline_samples'],
                       flip=True)

        # find all hits
        hits = strax.find_hits(
            records,
            min_amplitude=self.hit_thresholds,
            min_height_over_noise=self.config['hit_min_height_over_noise'],
        )

        # sort hits by record_i and time, then find LED hit and afterpulse
        # hits within the same record
        hits_ap = find_ap(
            hits,
            records,
            LED_window_left=self.config['LED_window_left'],
            LED_window_right=self.config['LED_window_right'],
            hit_left_extension=self.hit_left_extension,
            hit_right_extension=self.hit_right_extension,
        )

        hits_ap['area_pe'] = hits_ap['area'] * self.to_pe[hits_ap['channel']]
        hits_ap['height_pe'] = hits_ap['height'] * self.to_pe[
            hits_ap['channel']]

        return hits_ap
Exemplo n.º 2
0
def test_lone_hits_integration_bounds(records, left_extension, right_extension):
    """
    Loops over hits and tests if integration bounds overlap.
    """
    n_channel = 0
    if len(records):
        n_channel = records['channel'].max()+1

    hits = strax.find_hits(records, np.ones(n_channel))

    strax.find_hit_integration_bounds(hits,
                                      np.zeros(0, dtype=strax.time_dt_fields),
                                      records,
                                      (left_extension, right_extension),
                                      n_channel,
                                      allow_bounds_beyond_records=False
                                      )
    _test_overlap(hits)

    hits['left_integration'] = 0
    hits['right_integration'] = 0

    strax.find_hit_integration_bounds(hits,
                                      np.zeros(0, dtype=strax.time_dt_fields),
                                      records,
                                      (left_extension, right_extension),
                                      n_channel,
                                      allow_bounds_beyond_records=True
                                      )
    _test_overlap(hits)
Exemplo n.º 3
0
    def compute(self, records_nv, start, end):
        hits = strax.find_hits(records_nv, min_amplitude=self.config['hit_min_amplitude_nv'])
        hits = remove_switched_off_channels(hits, self.to_pe)

        temp_hitlets = strax.create_hitlets_from_hits(hits,
                                                      self.config['save_outside_hits_nv'],
                                                      self.channel_range,
                                                      chunk_start=start,
                                                      chunk_end=end)
        del hits

        # Get hitlet data and split hitlets:
        temp_hitlets = strax.get_hitlets_data(temp_hitlets, records_nv, to_pe=self.to_pe)

        temp_hitlets = strax.split_peaks(temp_hitlets,
                                         records_nv,
                                         self.to_pe,
                                         data_type='hitlets',
                                         algorithm='local_minimum',
                                         min_height=self.config['min_split_nv'],
                                         min_ratio=self.config['min_split_ratio_nv']
                                         )

        # Compute other hitlet properties:
        # We have to loop here 3 times over all hitlets...
        strax.hitlet_properties(temp_hitlets)
        entropy = strax.conditional_entropy(temp_hitlets, template='flat', square_data=False)
        temp_hitlets['entropy'][:] = entropy

        # Remove data field:
        hitlets = np.zeros(len(temp_hitlets), dtype=strax.hitlet_dtype())
        strax.copy_to_buffer(temp_hitlets, hitlets, '_copy_hitlets')
        return hitlets
Exemplo n.º 4
0
    def compute(self, records):
        r = records
        hits = strax.find_hits(r, threshold=self.config['hit_threshold'])
        hits = strax.sort_by_time(hits)

        peaks = strax.find_peaks(
            hits,
            self.config['to_pe'],
            result_dtype=self.dtype,
            gap_threshold=self.config['peak_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_chan'],
            min_area=self.config['peak_min_area'],
            max_duration=self.config['peak_max_duration'])
        strax.sum_waveform(peaks, r, adc_to_pe=self.config['to_pe'])
        peaks = peaks[peaks['dt'] > 0]  # removes strange edge case
        peaks = strax.split_peaks(peaks,
                                  r,
                                  self.config['to_pe'],
                                  min_height=self.config['split_min_height'],
                                  min_ratio=self.config['split_min_ratio'])

        strax.compute_widths(peaks)

        return peaks
Exemplo n.º 5
0
    def compute(self, raw_records):
        # Remove records from channels for which the gain is unknown
        r = raw_records[raw_records['channel'] < len(to_pe)]

        hits = strax.find_hits(r)
        strax.cut_outside_hits(r, hits)
        return r
Exemplo n.º 6
0
    def compute(self, raw_records):
        # Remove records from funny channels (if present)
        r = raw_records[raw_records['channel'] < len(to_pe)]

        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        strax.zero_out_of_bounds(r)

        if self.config['s2_tail_veto']:
            # Experimental data reduction
            r = strax.exclude_tails(r, to_pe)

        # Find hits before filtering
        hits = strax.find_hits(r)

        if self.config['filter']:
            # Filter to concentrate the PMT pulses
            strax.filter_records(
                r, np.array(self.config['filter']))

        le, re = self.config['save_outside_hits']
        r = strax.cut_outside_hits(r, hits,
                                   left_extension=le,
                                   right_extension=re)

        # Probably overkill, but just to be sure...
        strax.zero_out_of_bounds(r)
        return r
Exemplo n.º 7
0
    def compute(self, raw_records_coin_nv):
        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        r = strax.raw_to_records(raw_records_coin_nv)
        del raw_records_coin_nv

        r = strax.sort_by_time(r)
        strax.zero_out_of_bounds(r)
        strax.baseline(r,
                       baseline_samples=self.baseline_samples,
                       flip=True)

        if self.config['min_samples_alt_baseline_nv']:
            m = r['pulse_length'] > self.config['min_samples_alt_baseline_nv']
            if np.any(m):
                # Correcting baseline after PMT saturated signals
                r[m] = median_baseline(r[m])

        strax.integrate(r)

        strax.zero_out_of_bounds(r)

        hits = strax.find_hits(r, min_amplitude=self.hit_thresholds)

        le, re = self.config['save_outside_hits_nv']
        r = strax.cut_outside_hits(r, hits, left_extension=le, right_extension=re)
        strax.zero_out_of_bounds(r)

        return r
Exemplo n.º 8
0
    def compute(self, raw_records_coin_nv):
        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        r = strax.raw_to_records(raw_records_coin_nv)
        del raw_records_coin_nv

        r = strax.sort_by_time(r)
        strax.zero_out_of_bounds(r)
        strax.baseline(r,
                       baseline_samples=self.config['baseline_samples_nv'],
                       flip=True)
        strax.integrate(r)

        strax.zero_out_of_bounds(r)

        hits = strax.find_hits(
            r, min_amplitude=self.config['hit_min_amplitude_nv'])

        le, re = self.config['save_outside_hits_nv']
        r = strax.cut_outside_hits(r,
                                   hits,
                                   left_extension=le,
                                   right_extension=re)
        strax.zero_out_of_bounds(r)

        rlinks = strax.record_links(r)
        r = clean_up_empty_records(r, rlinks, only_last=True)
        return r
Exemplo n.º 9
0
def _find_hits(r):
    hits = strax.find_hits(r, threshold=0)
    # Test pulses have dt=1 and time=0
    # TODO: hm, maybe this doesn't test everything
    np.testing.assert_equal(hits['time'], hits['left'])
    # NB: exclusive right bound, no + 1 here
    np.testing.assert_equal(hits['length'], hits['right'] - hits['left'])
    return list(zip(hits['left'], hits['right']))
Exemplo n.º 10
0
def test__build_hit_waveform(records):
    hits = strax.find_hits(records, np.ones(10000))

    for h in hits:
        hit_waveform = np.zeros(len(records[0]['data']))
        _ = strax.processing.peak_building._build_hit_waveform(
            h, records[h['record_i']], hit_waveform)
        assert h['area'] == np.sum(hit_waveform), 'Got worng area!'
Exemplo n.º 11
0
    def compute(self, raw_records):
        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        strax.zero_out_of_bounds(raw_records)

        ##
        # Split off non-TPC records and count TPC pulses
        # (perhaps we should migrate this to DAQRreader in the future)
        ##
        r, other = channel_split(raw_records, n_tpc)
        pulse_counts = count_pulses(r, n_tpc)
        diagnostic_records, aqmon_records = channel_split(other, 254)

        ##
        # Process the TPC records
        ##
        if self.config['tail_veto_threshold'] and len(r):
            r, r_vetoed, veto_regions = software_he_veto(
                r,
                self.to_pe,
                area_threshold=self.config['tail_veto_threshold'],
                veto_length=self.config['tail_veto_duration'],
                veto_res=self.config['tail_veto_resolution'],
                pass_veto_fraction=self.config['tail_veto_pass_fraction'],
                pass_veto_extend=self.config['tail_veto_pass_extend'])

            # In the future, we'll probably want to sum the waveforms
            # inside the vetoed regions, so we can still save the "peaks".
            del r_vetoed

        else:
            veto_regions = np.zeros(0, dtype=strax.hit_dtype)

        if len(r):
            # Find hits
            # -- before filtering,since this messes with the with the S/N
            hits = strax.find_hits(r, threshold=self.config['hit_threshold'])

            if self.config['pmt_pulse_filter']:
                # Filter to concentrate the PMT pulses
                strax.filter_records(r,
                                     np.array(self.config['pmt_pulse_filter']))

            le, re = self.config['save_outside_hits']
            r = strax.cut_outside_hits(r,
                                       hits,
                                       left_extension=le,
                                       right_extension=re)

            # Probably overkill, but just to be sure...
            strax.zero_out_of_bounds(r)

        return dict(records=r,
                    diagnostic_records=diagnostic_records,
                    aqmon_records=aqmon_records,
                    pulse_counts=pulse_counts,
                    veto_regions=veto_regions)
Exemplo n.º 12
0
 def compute(self, raw_records_aqmon):
     rec = strax.raw_to_records(raw_records_aqmon)
     strax.sort_by_time(rec)
     strax.zero_out_of_bounds(rec)
     strax.baseline(rec,
                    baseline_samples=self.config['baseline_samples_aqmon'],
                    flip=True)
     aqmon_hits = strax.find_hits(
         rec, min_amplitude=self.config['hit_min_amplitude_aqmon'])
     return aqmon_hits
Exemplo n.º 13
0
def _find_hits(r):
    hits = strax.find_hits(r, threshold=0)
    # Test pulses have dt=1 and time=0
    # TODO: hm, maybe this doesn't test everything
    np.testing.assert_equal(hits['time'], hits['left'])
    # NB: exclusive right bound, no + 1 here
    np.testing.assert_equal(hits['length'], hits['right'] - hits['left'])
    for h in hits:
        q = r[h['record_i']]
        assert q['data'][h['left']:h['right']].sum() == h['area']
    return list(zip(hits['left'], hits['right']))
Exemplo n.º 14
0
    def compute(self, records_nv, start, end):
        # Search again for hits in records:
        hits = strax.find_hits(
            records_nv, min_amplitude=self.config['hit_min_amplitude_nv'])

        # Merge concatenate overlapping  within a channel. This is important
        # in case hits were split by record boundaries. In case we
        # accidentally concatenate two PMT signals we split them later again.
        hits = strax.concat_overlapping_hits(
            hits, self.config['save_outside_hits_nv'],
            self.config['channel_map']['nveto'], start, end)
        hits = strax.sort_by_time(hits)

        # Now convert hits into temp_hitlets including the data field:
        if len(hits):
            nsamples = hits['length'].max()
        else:
            nsamples = 0
        temp_hitlets = np.zeros(
            len(hits), strax.hitlet_with_data_dtype(n_samples=nsamples))

        # Generating hitlets and copying relevant information from hits to hitlets.
        # These hitlets are not stored in the end since this array also contains a data
        # field which we will drop later.
        strax.refresh_hit_to_hitlets(hits, temp_hitlets)
        del hits

        # Get hitlet data and split hitlets:
        strax.get_hitlets_data(temp_hitlets, records_nv, to_pe=self.to_pe)

        temp_hitlets = strax.split_peaks(
            temp_hitlets,
            records_nv,
            self.to_pe,
            data_type='hitlets',
            algorithm='local_minimum',
            min_height=self.config['min_split_nv'],
            min_ratio=self.config['min_split_ratio_nv'])

        # Compute other hitlet properties:
        # We have to loop here 3 times over all hitlets...
        strax.hitlet_properties(temp_hitlets)
        entropy = strax.conditional_entropy(temp_hitlets,
                                            template='flat',
                                            square_data=False)
        temp_hitlets['entropy'][:] = entropy
        strax.compute_widths(temp_hitlets)

        # Remove data field:
        hitlets = np.zeros(len(temp_hitlets), dtype=strax.hitlet_dtype())
        drop_data_field(temp_hitlets, hitlets)

        return hitlets
Exemplo n.º 15
0
    def compute(self, raw_records):
        # Remove records from channels for which the gain is unknown
        r = raw_records[raw_records['channel'] < len(to_pe)]

        # Experimental data reduction: disabled
        # Seems to remove many S2s since it triggers on S1s!
        # (perhaps due to larger amount of afterpuless
        #r = strax.exclude_tails(r, to_pe)

        hits = strax.find_hits(r)
        strax.cut_outside_hits(r, hits)
        return r
Exemplo n.º 16
0
def test_splitter_outer():
    data = [0, 2, 2, 0, 2, 2, 1]
    records = np.zeros(1, dtype=strax.record_dtype(len(data)))
    records['dt'] = 1
    records['data'] = data
    records['length'] = len(data)
    records['pulse_length'] = len(data)
    to_pe = np.ones(10)

    hits = strax.find_hits(records, np.ones(1))
    hits['left_integration'] = hits['left']
    hits['right_integration'] = hits['right']
    peaks = np.zeros(1, dtype=strax.peak_dtype())
    hitlets = np.zeros(1, dtype=strax.hitlet_with_data_dtype(10))
    for data_type in (peaks, hitlets):
        data_type['dt'] = 1
        data_type['data'][0, :len(data)] = data
        data_type['length'] = len(data)

    rlinks = strax.record_links(records)
    peaks = strax.split_peaks(peaks,
                              hits,
                              records,
                              rlinks,
                              to_pe,
                              algorithm='local_minimum',
                              data_type='peaks',
                              min_height=1,
                              min_ratio=0)

    hitlets = strax.split_peaks(hitlets,
                                hits,
                                records,
                                rlinks,
                                to_pe,
                                algorithm='local_minimum',
                                data_type='hitlets',
                                min_height=1,
                                min_ratio=0)

    for name, data_type in zip(('peaks', 'hitlets'), (peaks, hitlets)):
        data = data_type[0]['data'][:data_type[0]['length']]
        assert np.all(
            data == [0, 2, 2]
        ), f'Wrong split for {name}, got {data}, expected {[0, 2, 2]}.'
        data = data_type[1]['data'][:data_type[1]['length']]
        assert np.all(
            data == [0, 2, 2, 1]
        ), f'Wrong split for {name}, got {data}, expected {[0, 2, 2, 1]}.'
Exemplo n.º 17
0
    def compute(self, records, peaks):
        r = records
        p = peaks
        hits = strax.find_hits(r)
        hits = strax.sort_by_time(hits)

        hit_mean_times = hits['time'] + (hits['length'] / 2.0
                                         )  # hit "mean" time
        peak_mean_times = p['time'] + (p['length'] / 2.0)  # peak "mean" time

        tight_coin = self.get_tight_coin(
            hit_mean_times, peak_mean_times,
            self.config['tight_coincidence_window_left'],
            self.config['tight_coincidence_window_right'])

        return dict(tight_coincidence=tight_coin)
Exemplo n.º 18
0
    def find_aqmon_hits_per_channel(self, records):
        """Allow different thresholds to be applied to different channels"""
        aqmon_thresholds = np.zeros(np.max(self.aqmon_channels) + 1)
        for hit_threshold, channels in self.hit_min_amplitude_aqmon:
            aqmon_thresholds[np.array(channels)] = hit_threshold

        # Split the artificial deadtime ones and do those separately if there are any
        is_artificial = records['channel'] == AqmonChannels.ARTIFICIAL_DEADTIME
        aqmon_hits = strax.find_hits(records[~is_artificial],
                                     min_amplitude=aqmon_thresholds)

        if np.sum(is_artificial):
            aqmon_hits = np.concatenate(
                [aqmon_hits,
                 self.get_deadtime_hits(records[is_artificial])])
        return aqmon_hits
Exemplo n.º 19
0
    def compute(self, raw_records):
        # Remove records from channels for which the gain is unknown
        # or low
        channels_to_cut = np.argwhere(
            self.config['to_pe'] > (adc_to_e / self.config['min_gain']))
        r = raw_records
        for ch in channels_to_cut.reshape(-1):
            r = r[r['channel'] != ch]

        strax.zero_out_of_bounds(r)
        hits = strax.find_hits(r, threshold=self.config['hit_threshold'])
        strax.cut_outside_hits(
            r,
            hits,
            left_extension=self.config['left_cut_extension'],
            right_extension=self.config['right_cut_extension'])
        return r
Exemplo n.º 20
0
def _find_hits(r):
    # Test pulses have dt=1 and time=0
    # TODO: hm, maybe this doesn't test everything

    hits = strax.find_hits(r, min_amplitude=1)

    # dt = 1, so:
    np.testing.assert_equal(hits['time'], hits['left'])

    # NB: exclusive right bound, no + 1 here
    np.testing.assert_equal(hits['length'], hits['right'] - hits['left'])

    # Check hits are properly integrated
    for h in hits:
        q = r[h['record_i']]
        assert q['data'][h['left']:h['right']].sum() == h['area']

    return list(zip(hits['left'], hits['right']))
Exemplo n.º 21
0
def test_get_hitlets_data():
    dummy_records = [  # Contains Hitlet #:
        [
            [1, 3, 2, 1, 0, 0],
        ],  # 0
        [
            [0, 0, 0, 0, 1, 3],  # 1
            [2, 1, 0, 0, 0, 0]
        ],  #
        [
            [0, 0, 0, 0, 1, 3],  # 2
            [2, 1, 0, 1, 3, 2],
        ],  # 3
        [
            [0, 0, 0, 0, 1, 2],  # 4
            [2, 2, 2, 2, 2, 2],
            [2, 1, 0, 0, 0, 0]
        ],
        [[2, 1, 0, 1, 3, 2]],  # 5, 6
        [[2, 2, 2, 2, 2, 2]]  # 7
    ]

    # Defining the true parameters of the hitlets:
    true_area = [7, 7, 7, 6, 18, 3, 6, 12]
    true_time = [10, 28, 46, 51, 68, 88, 91, 104]
    true_waveform = [[1, 3, 2, 1], [1, 3, 2, 1], [1, 3, 2, 1], [1, 3, 2],
                     [1, 2, 2, 2, 2, 2, 2, 2, 2, 1], [2, 1], [1, 3, 2],
                     [2, 2, 2, 2, 2, 2]]

    records = _make_fake_records(dummy_records)
    hits = strax.find_hits(records, min_amplitude=2)
    hits = strax.concat_overlapping_hits(hits, (1, 1), (0, 1), 0, float('inf'))
    hitlets = np.zeros(
        len(hits),
        strax.hitlet_with_data_dtype(n_samples=np.max(hits['length'])))
    strax.refresh_hit_to_hitlets(hits, hitlets)
    strax.get_hitlets_data(hitlets, records, np.array([1, 1]))

    for i, (a, wf, t) in enumerate(zip(true_area, true_waveform, true_time)):
        h = hitlets[i]
        assert h['area'] == a, f'Hitlet {i} has the wrong area'
        assert np.all(h['data'][:h['length']] ==
                      wf), f'Hitlet {i} has the wrong waveform'
        assert h['time'] == t, f'Hitlet {i} has the wrong starttime'
Exemplo n.º 22
0
    def compute(self, records):
        r = records
        hits = strax.find_hits(r)  # TODO: Duplicate work
        hits = strax.sort_by_time(hits)

        peaks = strax.find_peaks(hits, to_pe, result_dtype=self.dtype)
        strax.sum_waveform(peaks, r, to_pe)

        peaks = strax.split_peaks(peaks, r, to_pe)

        strax.compute_widths(peaks)

        if self.config['diagnose_sorting']:
            assert np.diff(r['time']).min() >= 0, "Records not sorted"
            assert np.diff(hits['time']).min() >= 0, "Hits not sorted"
            assert np.all(peaks['time'][1:] >= strax.endtime(peaks)[:-1]
                          ), "Peaks not disjoint"

        return peaks
Exemplo n.º 23
0
def test_sum_waveform(records):
    # Make a single big peak to contain all the records
    n_ch = 100

    rlinks = strax.record_links(records)
    hits = strax.find_hits(records, np.ones(n_ch))
    hits['left_integration'] = hits['left']
    hits['right_integration'] = hits['right']
    hits = strax.sort_by_time(hits)

    peaks = strax.find_peaks(hits,
                             np.ones(n_ch),
                             gap_threshold=6,
                             left_extension=2,
                             right_extension=3,
                             min_area=0,
                             min_channels=1,
                             max_duration=10_000_000)
    strax.sum_waveform(peaks, hits, records, rlinks, np.ones(n_ch))

    for p in peaks:
        # Area measures must be consistent
        area = p['area']
        assert area >= 0
        assert p['data'].sum() == area
        assert p['area_per_channel'].sum() == area

        sum_wv = np.zeros(p['length'], dtype=np.float32)
        for r in records:
            (rs, re), (ps, pe) = strax.overlap_indices(r['time'], r['length'],
                                                       p['time'], p['length'])
            sum_wv[ps:pe] += r['data'][rs:re]

        assert np.all(p['data'][:p['length']] == sum_wv)

        # Finally check that we also can use a selection of peaks to sum
        strax.sum_waveform(peaks,
                           hits,
                           records,
                           rlinks,
                           np.ones(n_ch),
                           select_peaks_indices=np.array([0]))
Exemplo n.º 24
0
def test_ext_timings_nv(records):
    """
    Little test for nVetoExtTimings.
    """
    if not straxen.utilix_is_configured():
        return
    # several fake records do not have any pulse length
    # and channel start at 0, convert to nv:
    records['pulse_length'] = records['length']
    records['channel'] += 2000

    st = straxen.contexts.xenonnt_led()
    plugin = st.get_single_plugin('1', 'ext_timings_nv')
    hits = strax.find_hits(records, min_amplitude=1)

    hitlets = np.zeros(len(hits), strax.hitlet_dtype())
    strax.copy_to_buffer(hits, hitlets, '_refresh_hit_to_hitlets')
    result = plugin.compute(hitlets, records)
    assert len(result) == len(hits)
    assert np.all(result['time'] == hits['time'])
    assert np.all(result['pulse_i'] == hits['record_i'])
    true_dt = hits['time'] - records[hits['record_i']]['time']
    assert np.all(result['delta_time'] == true_dt)
Exemplo n.º 25
0
    def compute(self, records):
        r = records

        hits = strax.find_hits(r)

        # Remove hits in zero-gain channels
        # they should not affect the clustering!
        hits = hits[self.to_pe[hits['channel']] != 0]

        hits = strax.sort_by_time(hits)

        peaks = strax.find_peaks(
            hits,
            self.to_pe,
            gap_threshold=self.config['peak_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_pmts'],
            result_dtype=self.dtype)
        strax.sum_waveform(peaks, r, self.to_pe)

        peaks = strax.split_peaks(
            peaks,
            r,
            self.to_pe,
            min_height=self.config['peak_split_min_height'],
            min_ratio=self.config['peak_split_min_ratio'])

        strax.compute_widths(peaks)

        if self.config['diagnose_sorting']:
            assert np.diff(r['time']).min() >= 0, "Records not sorted"
            assert np.diff(hits['time']).min() >= 0, "Hits not sorted"
            assert np.all(peaks['time'][1:] >= strax.endtime(peaks)[:-1]
                          ), "Peaks not disjoint"

        return peaks
Exemplo n.º 26
0
    def compute(self, raw_records_coin_nv):
        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        r = strax.raw_to_records(raw_records_coin_nv)
        del raw_records_coin_nv

        r = strax.sort_by_time(r)
        strax.zero_out_of_bounds(r)
        strax.baseline(r, baseline_samples=self.baseline_samples, flip=True)

        strax.integrate(r)

        strax.zero_out_of_bounds(r)

        hits = strax.find_hits(r, min_amplitude=self.hit_thresholds)

        le, re = self.config['save_outside_hits_nv']
        r = strax.cut_outside_hits(r,
                                   hits,
                                   left_extension=le,
                                   right_extension=re)
        strax.zero_out_of_bounds(r)

        return r
Exemplo n.º 27
0
def software_he_veto(records,
                     to_pe,
                     chunk_end,
                     area_threshold=int(1e5),
                     veto_length=int(3e6),
                     veto_res=int(1e3),
                     pass_veto_fraction=0.01,
                     pass_veto_extend=3,
                     max_veto_value=None):
    """Veto veto_length (time in ns) after peaks larger than
    area_threshold (in PE).

    Further large peaks inside the veto regions are still passed:
    We sum the waveform inside the veto region (with time resolution
    veto_res in ns) and pass regions within pass_veto_extend samples
    of samples with amplitude above pass_veto_fraction times the maximum.

    :returns: (preserved records, vetoed records, veto intervals).

    :param records: PMT records
    :param to_pe: ADC to PE conversion factors for the channels in records.
    :param chunk_end: Endtime of chunk to set as maximum ceiling for the veto period
    :param area_threshold: Minimum peak area to trigger the veto.
    Note we use a much rougher clustering than in later processing.
    :param veto_length: Time in ns to veto after the peak
    :param veto_res: Resolution of the sum waveform inside the veto region.
    Do not make too large without increasing integer type in some strax
    dtypes...
    :param pass_veto_fraction: fraction of maximum sum waveform amplitude to
    trigger veto passing of further peaks
    :param pass_veto_extend: samples to extend (left and right) the pass veto
    regions.
    :param max_veto_value: if not None, pass peaks that exceed this area
    no matter what.
    """
    veto_res = int(veto_res)
    if veto_res > np.iinfo(np.int16).max:
        raise ValueError("Veto resolution does not fit 16-bit int")
    veto_length = np.ceil(veto_length / veto_res).astype(np.int) * veto_res
    veto_n = int(veto_length / veto_res) + 1

    # 1. Find large peaks in the data.
    # This will actually return big agglomerations of peaks and their tails
    peaks = strax.find_peaks(records,
                             to_pe,
                             gap_threshold=1,
                             left_extension=0,
                             right_extension=0,
                             min_channels=100,
                             min_area=area_threshold,
                             result_dtype=strax.peak_dtype(
                                 n_channels=len(to_pe),
                                 n_sum_wv_samples=veto_n))

    # 2a. Set 'candidate regions' at these peaks. These should:
    #  - Have a fixed maximum length (else we can't use the strax hitfinder on them)
    #  - Never extend beyond the current chunk
    #  - Do not overlap
    veto_start = peaks['time']
    veto_end = np.clip(peaks['time'] + veto_length, None, chunk_end)
    veto_end[:-1] = np.clip(veto_end[:-1], None, veto_start[1:])

    # 2b. Convert these into strax record-like objects
    # Note the waveform is float32 though (it's a summed waveform)
    regions = np.zeros(len(veto_start),
                       dtype=strax.interval_dtype + [
                           ("data", (np.float32, veto_n)),
                           ("baseline", np.float32),
                           ("baseline_rms", np.float32),
                           ("reduction_level", np.int64),
                           ("record_i", np.int64),
                           ("pulse_length", np.int64),
                       ])
    regions['time'] = veto_start
    regions['length'] = (veto_end - veto_start) // veto_n
    regions['pulse_length'] = veto_n
    regions['dt'] = veto_res

    if not len(regions):
        # No veto anywhere in this data
        return records, records[:0], np.zeros(0, strax.hit_dtype)

    # 3. Find pass_veto regios with big peaks inside the veto regions.
    # For this we compute a rough sum waveform (at low resolution,
    # without looping over the pulse data)
    rough_sum(regions, records, to_pe, veto_n, veto_res)
    if max_veto_value is not None:
        pass_veto = strax.find_hits(regions, min_amplitude=max_veto_value)
    else:
        regions['data'] /= np.max(regions['data'], axis=1)[:, np.newaxis]
        pass_veto = strax.find_hits(regions, min_amplitude=pass_veto_fraction)

    # 4. Extend these by a few samples and inverse to find veto regions
    regions['data'] = 1
    regions = strax.cut_outside_hits(regions,
                                     pass_veto,
                                     left_extension=pass_veto_extend,
                                     right_extension=pass_veto_extend)
    regions['data'] = 1 - regions['data']
    veto = strax.find_hits(regions, min_amplitude=1)
    # Do not remove very tiny regions
    veto = veto[veto['length'] > 2 * pass_veto_extend]

    # 5. Apply the veto and return results
    veto_mask = strax.fully_contained_in(records, veto) == -1
    return tuple(list(mask_and_not(records, veto_mask)) + [veto])
Exemplo n.º 28
0
    def compute(self, raw_records, start, end):
        if self.config['check_raw_record_overlaps']:
            check_overlaps(raw_records, n_channels=3000)

        # Throw away any non-TPC records; this should only happen for XENON1T
        # converted data
        raw_records = raw_records[
            raw_records['channel'] < self.config['n_tpc_pmts']]

        # Convert everything to the records data type -- adds extra fields.
        r = strax.raw_to_records(raw_records)
        del raw_records

        # Do not trust in DAQ + strax.baseline to leave the
        # out-of-bounds samples to zero.
        # TODO: better to throw an error if something is nonzero
        strax.zero_out_of_bounds(r)

        strax.baseline(
            r,
            baseline_samples=self.config['baseline_samples'],
            allow_sloppy_chunking=self.config['allow_sloppy_chunking'],
            flip=True)

        strax.integrate(r)

        pulse_counts = count_pulses(r, self.config['n_tpc_pmts'])
        pulse_counts['time'] = start
        pulse_counts['endtime'] = end

        if len(r) and self.hev_enabled:

            r, r_vetoed, veto_regions = software_he_veto(
                r,
                self.to_pe,
                end,
                area_threshold=self.config['tail_veto_threshold'],
                veto_length=self.config['tail_veto_duration'],
                veto_res=self.config['tail_veto_resolution'],
                pass_veto_extend=self.config['tail_veto_pass_extend'],
                pass_veto_fraction=self.config['tail_veto_pass_fraction'],
                max_veto_value=self.config['max_veto_value'])

            # In the future, we'll probably want to sum the waveforms
            # inside the vetoed regions, so we can still save the "peaks".
            del r_vetoed

        else:
            veto_regions = np.zeros(0, dtype=strax.hit_dtype)

        if len(r):
            # Find hits
            # -- before filtering,since this messes with the with the S/N
            hits = strax.find_hits(r,
                                   min_amplitude=straxen.hit_min_amplitude(
                                       self.config['hit_min_amplitude']))

            if self.config['pmt_pulse_filter']:
                # Filter to concentrate the PMT pulses
                strax.filter_records(r,
                                     np.array(self.config['pmt_pulse_filter']))

            le, re = self.config['save_outside_hits']
            r = strax.cut_outside_hits(r,
                                       hits,
                                       left_extension=le,
                                       right_extension=re)

            # Probably overkill, but just to be sure...
            strax.zero_out_of_bounds(r)

        return dict(records=r,
                    pulse_counts=pulse_counts,
                    veto_regions=veto_regions)
Exemplo n.º 29
0
    def compute(self, records, start, end):
        r = records

        hits = strax.find_hits(r, min_amplitude=self.hit_thresholds)

        # Remove hits in zero-gain channels
        # they should not affect the clustering!
        hits = hits[self.to_pe[hits['channel']] != 0]

        hits = strax.sort_by_time(hits)

        # Use peaklet gap threshold for initial clustering
        # based on gaps between hits
        peaklets = strax.find_peaks(
            hits,
            self.to_pe,
            gap_threshold=self.config['peaklet_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_pmts'],
            result_dtype=self.dtype_for('peaklets'),
            max_duration=self.config['peaklet_max_duration'],
        )

        # Make sure peaklets don't extend out of the chunk boundary
        # This should be very rare in normal data due to the ADC pretrigger
        # window.
        self.clip_peaklet_times(peaklets, start, end)

        # Get hits outside peaklets, and store them separately.
        # fully_contained is OK provided gap_threshold > extension,
        # which is asserted inside strax.find_peaks.
        is_lone_hit = strax.fully_contained_in(hits, peaklets) == -1
        lone_hits = hits[is_lone_hit]
        strax.integrate_lone_hits(
            lone_hits,
            records,
            peaklets,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe))

        # Compute basic peak properties -- needed before natural breaks
        hits = hits[~is_lone_hit]
        # Define regions outside of peaks such that _find_hit_integration_bounds
        # is not extended beyond a peak.
        outside_peaks = self.create_outside_peaks_region(peaklets, start, end)
        strax.find_hit_integration_bounds(
            hits,
            outside_peaks,
            records,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe),
            allow_bounds_beyond_records=True,
        )

        # Transform hits to hitlets for naming conventions. A hit refers
        # to the central part above threshold a hitlet to the entire signal
        # including the left and right extension.
        # (We are not going to use the actual hitlet data_type here.)
        hitlets = hits
        del hits

        hitlet_time_shift = (hitlets['left'] -
                             hitlets['left_integration']) * hitlets['dt']
        hitlets['time'] = hitlets['time'] - hitlet_time_shift
        hitlets['length'] = (hitlets['right_integration'] -
                             hitlets['left_integration'])
        hitlets = strax.sort_by_time(hitlets)
        rlinks = strax.record_links(records)

        strax.sum_waveform(peaklets, hitlets, r, rlinks, self.to_pe)

        strax.compute_widths(peaklets)

        # Split peaks using low-split natural breaks;
        # see https://github.com/XENONnT/straxen/pull/45
        # and https://github.com/AxFoundation/strax/pull/225
        peaklets = strax.split_peaks(
            peaklets,
            hitlets,
            r,
            rlinks,
            self.to_pe,
            algorithm='natural_breaks',
            threshold=self.natural_breaks_threshold,
            split_low=True,
            filter_wing_width=self.config['peak_split_filter_wing_width'],
            min_area=self.config['peak_split_min_area'],
            do_iterations=self.config['peak_split_iterations'])

        # Saturation correction using non-saturated channels
        # similar method used in pax
        # see https://github.com/XENON1T/pax/pull/712
        # Cases when records is not writeable for unclear reason
        # only see this when loading 1T test data
        # more details on https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html
        if not r['data'].flags.writeable:
            r = r.copy()

        if self.config['saturation_correction_on']:
            peak_list = peak_saturation_correction(
                r,
                rlinks,
                peaklets,
                hitlets,
                self.to_pe,
                reference_length=self.config['saturation_reference_length'],
                min_reference_length=self.
                config['saturation_min_reference_length'])

            # Compute the width again for corrected peaks
            strax.compute_widths(peaklets, select_peaks_indices=peak_list)

        # Compute tight coincidence level.
        # Making this a separate plugin would
        # (a) doing hitfinding yet again (or storing hits)
        # (b) increase strax memory usage / max_messages,
        #     possibly due to its currently primitive scheduling.
        hit_max_times = np.sort(
            hitlets['time'] +
            hitlets['dt'] * hit_max_sample(records, hitlets) +
            hitlet_time_shift  # add time shift again to get correct maximum
        )
        peaklet_max_times = (
            peaklets['time'] +
            np.argmax(peaklets['data'], axis=1) * peaklets['dt'])
        tight_coincidence_channel = get_tight_coin(
            hit_max_times, hitlets['channel'], peaklet_max_times,
            self.config['tight_coincidence_window_left'],
            self.config['tight_coincidence_window_right'], self.channel_range)

        peaklets['tight_coincidence'] = tight_coincidence_channel

        if self.config['diagnose_sorting'] and len(r):
            assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted"
            assert np.diff(
                hitlets['time']).min(initial=1) >= 0, "Hits/Hitlets not sorted"
            assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1]
                          ), "Peaks not disjoint"

        # Update nhits of peaklets:
        counts = strax.touching_windows(hitlets, peaklets)
        counts = np.diff(counts, axis=1).flatten()
        peaklets['n_hits'] = counts

        return dict(peaklets=peaklets, lone_hits=lone_hits)
Exemplo n.º 30
0
    def compute(self, records, start, end):
        r = records

        hits = strax.find_hits(r,
                               min_amplitude=straxen.hit_min_amplitude(
                                   self.config['hit_min_amplitude']))

        # Remove hits in zero-gain channels
        # they should not affect the clustering!
        hits = hits[self.to_pe[hits['channel']] != 0]

        hits = strax.sort_by_time(hits)

        # Use peaklet gap threshold for initial clustering
        # based on gaps between hits
        peaklets = strax.find_peaks(
            hits,
            self.to_pe,
            gap_threshold=self.config['peaklet_gap_threshold'],
            left_extension=self.config['peak_left_extension'],
            right_extension=self.config['peak_right_extension'],
            min_channels=self.config['peak_min_pmts'],
            result_dtype=self.dtype_for('peaklets'))

        # Make sure peaklets don't extend out of the chunk boundary
        # This should be very rare in normal data due to the ADC pretrigger
        # window.
        self.clip_peaklet_times(peaklets, start, end)

        # Get hits outside peaklets, and store them separately.
        # fully_contained is OK provided gap_threshold > extension,
        # which is asserted inside strax.find_peaks.
        lone_hits = hits[strax.fully_contained_in(hits, peaklets) == -1]
        strax.integrate_lone_hits(
            lone_hits,
            records,
            peaklets,
            save_outside_hits=(self.config['peak_left_extension'],
                               self.config['peak_right_extension']),
            n_channels=len(self.to_pe))

        # Compute basic peak properties -- needed before natural breaks
        strax.sum_waveform(peaklets, r, self.to_pe)
        strax.compute_widths(peaklets)

        # Split peaks using low-split natural breaks;
        # see https://github.com/XENONnT/straxen/pull/45
        # and https://github.com/AxFoundation/strax/pull/225
        peaklets = strax.split_peaks(
            peaklets,
            r,
            self.to_pe,
            algorithm='natural_breaks',
            threshold=self.natural_breaks_threshold,
            split_low=True,
            filter_wing_width=self.config['peak_split_filter_wing_width'],
            min_area=self.config['peak_split_min_area'],
            do_iterations=self.config['peak_split_iterations'])

        # Saturation correction using non-saturated channels
        # similar method used in pax
        # see https://github.com/XENON1T/pax/pull/712
        if self.config['saturation_correction_on']:
            peak_saturation_correction(
                r,
                peaklets,
                self.to_pe,
                reference_length=self.config['saturation_reference_length'],
                min_reference_length=self.
                config['saturation_min_reference_length'])

        # Compute tight coincidence level.
        # Making this a separate plugin would
        # (a) doing hitfinding yet again (or storing hits)
        # (b) increase strax memory usage / max_messages,
        #     possibly due to its currently primitive scheduling.
        hit_max_times = np.sort(hits['time'] +
                                hits['dt'] * hit_max_sample(records, hits))
        peaklet_max_times = (
            peaklets['time'] +
            np.argmax(peaklets['data'], axis=1) * peaklets['dt'])
        peaklets['tight_coincidence'] = get_tight_coin(
            hit_max_times, peaklet_max_times,
            self.config['tight_coincidence_window_left'],
            self.config['tight_coincidence_window_right'])

        if self.config['diagnose_sorting'] and len(r):
            assert np.diff(r['time']).min(initial=1) >= 0, "Records not sorted"
            assert np.diff(hits['time']).min(initial=1) >= 0, "Hits not sorted"
            assert np.all(peaklets['time'][1:] >= strax.endtime(peaklets)[:-1]
                          ), "Peaks not disjoint"

        # Update nhits of peaklets:
        counts = strax.touching_windows(hits, peaklets)
        counts = np.diff(counts, axis=1).flatten()
        counts += 1
        peaklets['n_hits'] = counts

        return dict(peaklets=peaklets, lone_hits=lone_hits)