Exemplo n.º 1
0
 def policy_evaluation(self, policy, context, desired_action, models,
                       delta):
     if policy != 'EXP4P':
         print("We don't support other bandit algorithms now!")
     else:
         historystorage = history.MemoryHistoryStorage()
         modelstorage = model.MemoryModelStorage()
         seq_error = np.zeros(shape=(self.t, 1))
         policy = exp4p.Exp4P(self.actions,
                              historystorage,
                              modelstorage,
                              models,
                              delta,
                              pmin=None)
         for t in range(self.t):
             history_id, action = policy.get_action(context[t])
             if desired_action[t][0] != action:
                 policy.reward(history_id, 0)
                 # sum_error += 1
                 if t == 0:
                     seq_error[t] = 1.0
                 else:
                     seq_error[t] = seq_error[t - 1] + 1.0
             else:
                 policy.reward(history_id, 1)
                 if t > 0:
                     seq_error[t] = seq_error[t - 1]
         return seq_error
Exemplo n.º 2
0
def policy_generation(bandit, actions):
    historystorage = history.MemoryHistoryStorage()
    modelstorage = model.MemoryModelStorage()

    if bandit == 'Exp4P':
        policy = exp4p.Exp4P(actions,
                             historystorage,
                             modelstorage,
                             delta=0.5,
                             pmin=None)

    elif bandit == 'LinUCB':
        policy = linucb.LinUCB(actions, historystorage, modelstorage, 0.3, 20)

    elif bandit == 'LinThompSamp':
        policy = linthompsamp.LinThompSamp(actions,
                                           historystorage,
                                           modelstorage,
                                           d=20,
                                           delta=0.61,
                                           r=0.01,
                                           epsilon=0.71)

    elif bandit == 'UCB1':
        policy = ucb1.UCB1(actions, historystorage, modelstorage)

    elif bandit == 'Exp3':
        policy = exp3.Exp3(actions, historystorage, modelstorage, gamma=0.2)

    elif bandit == 'random':
        policy = 0

    return policy
Exemplo n.º 3
0
 def test_initialization(self):
     policy = exp4p.Exp4P(self.actions,
                          self.historystorage,
                          self.modelstorage, [self.LogReg, self.MNB],
                          delta=0.1,
                          pmin=None)
     self.assertEqual(self.actions, policy._actions)
     self.assertEqual(0.1, policy.delta)
Exemplo n.º 4
0
 def test_get_first_action(self):
     policy = exp4p.Exp4P(self.actions,
                          self.historystorage,
                          self.modelstorage, [self.LogReg, self.MNB],
                          delta=0.1,
                          pmin=None)
     history_id, action = policy.get_action([1, 1])
     self.assertEqual(history_id, 0)
     self.assertIn(action, self.actions)
Exemplo n.º 5
0
 def test_update_reward(self):
     policy = exp4p.Exp4P(self.actions,
                          self.historystorage,
                          self.modelstorage, [self.LogReg, self.MNB],
                          delta=0.1,
                          pmin=None)
     history_id, action = policy.get_action([1, 1])
     policy.reward(history_id, 1.0)
     self.assertEqual(
         policy._historystorage.get_history(history_id).reward, 1.0)
Exemplo n.º 6
0
 def test_model_storage(self):
     policy = exp4p.Exp4P(self.actions,
                          self.historystorage,
                          self.modelstorage, [self.LogReg, self.MNB],
                          delta=0.1,
                          pmin=None)
     history_id, action = policy.get_action([1, 1])
     policy.reward(history_id, 1.0)
     self.assertEqual(len(policy._modelstorage._model['w']), 2)
     self.assertEqual(len(policy._modelstorage._model['query_vector']), 5)
     self.assertEqual(np.shape(policy._modelstorage._model['advice']),
                      (2, 5))
Exemplo n.º 7
0
def policy_generation(bandit, actions):
    """
    Parameters
    ----------
    bandit: 赌博机算法
    actions:动作即推荐的电影

    Returns
    -------
    policy: 生成的策略
    """
    historystorage = history.MemoryHistoryStorage()  # 内存中历史存储记录
    modelstorage = model.MemoryModelStorage()  # 内存中模型存储,为了统一

    if bandit == 'Exp4P':
        policy = exp4p.Exp4P(historystorage,
                             modelstorage,
                             actions,
                             delta=0.5,
                             p_min=None)

    elif bandit == 'LinUCB':
        #policy = linucb.LinUCB(historystorage, modelstorage, actions, 0.3, 20)
        policy = linucb.LinUCB(history_storage=historystorage,
                               model_storage=modelstorage,
                               action_storage=actions,
                               alpha=0.3,
                               context_dimension=18)

    elif bandit == 'LinThompSamp':
        policy = linthompsamp.LinThompSamp(
            historystorage,
            modelstorage,
            actions,
            #d=20, Supposed to be context dimension
            context_dimension=18,
            delta=0.61,
            R=0.01,
            epsilon=0.71)

    elif bandit == 'UCB1':
        policy = ucb1.UCB1(historystorage, modelstorage, actions)

    elif bandit == 'Exp3':
        policy = exp3.Exp3(historystorage, modelstorage, actions, gamma=0.2)

    elif bandit == 'random':
        policy = 0

    return policy
Exemplo n.º 8
0
 def test_reward_order_descending(self):
     policy = exp4p.Exp4P(self.actions,
                          self.historystorage,
                          self.modelstorage, [self.LogReg, self.MNB],
                          delta=0.1,
                          pmin=None)
     history_id, action = policy.get_action([1, 1])
     history_id_2, action_2 = policy.get_action([3, 3])
     policy.reward(history_id_2, 1)
     self.assertTrue((policy._historystorage.get_history(history_id).context
                      == np.transpose(np.array([[1, 1]]))).all())
     self.assertTrue((policy._historystorage.get_history(
         history_id_2).context == np.transpose(np.array([[3, 3]]))).all())
     self.assertEqual(
         policy._historystorage.get_history(history_id).reward, None)
     self.assertEqual(
         policy._historystorage.get_history(history_id_2).reward, 1)
Exemplo n.º 9
0
def policy_generation(bandit, actions):
    historystorage = history.MemoryHistoryStorage()
    modelstorage = model.MemoryModelStorage()

    if bandit == 'Exp4P':
        policy = exp4p.Exp4P(historystorage,
                             modelstorage,
                             actions,
                             delta=0.5,
                             p_min=None)

    elif bandit == 'LinUCB':
        #policy = linucb.LinUCB(historystorage, modelstorage, actions, 0.3, 20)
        policy = linucb.LinUCB(history_storage=historystorage,
                               model_storage=modelstorage,
                               action_storage=actions,
                               alpha=0.3,
                               context_dimension=18)

    elif bandit == 'LinThompSamp':
        policy = linthompsamp.LinThompSamp(
            historystorage,
            modelstorage,
            actions,
            #d=20, Supposed to be context dimension
            context_dimension=18,
            delta=0.61,
            R=0.01,
            epsilon=0.71)

    elif bandit == 'UCB1':
        policy = ucb1.UCB1(historystorage, modelstorage, actions)

    elif bandit == 'Exp3':
        policy = exp3.Exp3(historystorage, modelstorage, actions, gamma=0.2)

    elif bandit == 'random':
        policy = 0

    return policy