Exemplo n.º 1
0
 def fn(belief):
     problem = compile_belief(belief, goal)
     if FOCUSED:
         search = get_fast_downward(
             'astar', verbose=True
         )  # dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
         #plan, universe = focused_planner(problem, search=search, stream_cost=0, verbose=True, optimal=True, debug=False) # stream_cost = 0 instead of None
         plan, universe = simple_focused(problem,
                                         search=search,
                                         stream_cost=0,
                                         max_level=0,
                                         verbose=True,
                                         optimal=True,
                                         debug=False)
     else:
         search = get_fast_downward(
             'wastar1'
         )  # dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
         plan, universe = incremental_planner(problem,
                                              search=search,
                                              frequency=1,
                                              optimal=True,
                                              waves=True,
                                              debug=False,
                                              max_calls=5000)
     print
     print 'Cost:', plan_cost(universe, plan)
     print 'Length:', plan_length(universe, plan)
     plan = convert_plan(plan)
     print 'Plan:', plan
     if plan is None or not plan:
         return None
     action, params = plan[0]
     return OPERATOR_MAP[action.name](operators, *params)
Exemplo n.º 2
0
 def run_test(self, problem_fn, planner, search):
     print SEPARATOR
     print problem_fn.__name__, self.planner, self.search
     tamp_problem = problem_fn(p=self.p)
     stream_problem = compile_problem(tamp_problem)
     print stream_problem
     if search == BFS:
         search_fn = get_bfs()
     elif search == FAST_DOWNWARD:
         # 'dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
         search_fn = get_fast_downward('eager')
     else:
         raise ValueError(search)
     if planner == INCREMENTAL:
         plan, _ = incremental_planner(stream_problem,
                                       search=search_fn,
                                       waves=True,
                                       frequency=1,
                                       verbose=False)
     elif planner == FOCUSED:
         plan, _ = simple_focused(stream_problem,
                                  search=search_fn,
                                  check_feasible=False,
                                  greedy=False,
                                  dfs=True,
                                  verbose=False)
     else:
         raise ValueError(planner)
     self.assertTrue(plan is not None)
def solve_tamp(env):
    viewer = env.GetViewer() is not None
    problem = PROBLEM(env)

    robot, manipulator, base_manip, _ = initialize_openrave(env,
                                                            ARM,
                                                            min_delta=.01)
    bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}

    open_gripper(manipulator)
    initial_conf = Conf(
        robot.GetConfigurationValues()[manipulator.GetArmIndices()])

    ####################

    fts_problem = get_problem(env, problem, robot, manipulator, base_manip,
                              bodies, initial_conf)
    print
    print fts_problem

    stream_problem = constraint_to_stripstream(fts_problem)
    print
    print stream_problem

    for stream in stream_problem.cond_streams:
        print stream, stream.max_level

    # TODO - why is this slower/less reliable than the other one (extra axioms, eager evaluation?)
    if viewer: raw_input('Start?')
    search_fn = get_fast_downward('eager', max_time=10, verbose=False)
    #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False)
    solve = lambda: simple_focused(stream_problem,
                                   search=search_fn,
                                   max_level=INF,
                                   shared=False,
                                   debug=False,
                                   verbose=False)
    env.Lock()
    plan, universe = solve()
    env.Unlock()

    print SEPARATOR

    plan = convert_plan(plan)
    if plan is not None:
        print 'Success'
        for i, (action, args) in enumerate(plan):
            print i + 1, action, args
    else:
        print 'Failure'

    ####################

    if viewer and plan is not None:
        print SEPARATOR
        visualize_solution(env, problem, initial_conf, robot, manipulator,
                           bodies, plan)
    raw_input('Finish?')
Exemplo n.º 4
0
def solve_continuous_tamp(planner,
                          search,
                          visualize,
                          display,
                          verbose=False,
                          deterministic=False):
    # if deterministic:
    #  set_deterministic()

    # sample_tamp_problem | sample_grasp_problem | sample_namo_problem
    tamp_problem = sample_tamp_problem()

    # stream_problem = compile_problem(tamp_problem,
    # streams_fn=generative_streams) # constant_streams | implicit_streams |
    # generative_streams
    stream_problem = compile_problem(tamp_problem)
    print stream_problem
    viewer = None
    if visualize:
        viewer = visualize_initial(tamp_problem, stream_problem)
        raw_input('Continue?')
        # viewer.save('initial')

    if search == DEFAULT:
        search_fn = DEFAULT_SEARCH
    elif search == BFS:
        search_fn = get_bfs()
    elif search == FAST_DOWNWARD:
        # 'dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
        search_fn = get_fast_downward('eager')
    else:
        raise ValueError(search)

    t0 = time()
    if planner == INCREMENTAL:
        plan, universe = incremental_planner(
            stream_problem, search=search_fn, frequency=1,
            verbose=verbose)  # 1 | 20 | 100 | INF
    elif planner == FOCUSED:
        #plan, universe = focused_planner(stream_problem, search=search_fn, greedy=False, verbose=verbose)
        plan, universe = simple_focused(stream_problem,
                                        search=search_fn,
                                        greedy=True,
                                        optimal=False,
                                        verbose=verbose)
        #plan, universe = plan_focused(stream_problem, search=search_fn, greedy=True, optimal=False, verbose=verbose)
    else:
        raise ValueError(planner)

    print SEPARATOR
    print 'Planner:', planner
    print 'Search:', search
    print 'Plan:', convert_plan(plan)
    print 'Solved:', plan is not None
    print 'Length:', len(plan) if plan is not None else None
    print 'Time:', time() - t0

    # TODO - sometimes the movement actions, especially for the lazy
    # algorithm, screw up in the display for some reason...
    if display and plan is not None:
        if viewer is None:
            viewer = visualize_initial(tamp_problem, stream_problem)
        print '\nExecuting'
        # TODO - need to return the problem
        states = get_states(universe, plan)
        for i, state in enumerate(states):
            viewer.clear_state()
            visualize_atoms(viewer, state)
            raw_input('%s) %s?' %
                      (i, 'Continue' if i != len(states) - 1 else 'Finish'))
    elif viewer is not None:
        raw_input('\nFinish?')
Exemplo n.º 5
0
def solve_tamp(env, use_focused):
    use_viewer = env.GetViewer() is not None
    problem = PROBLEM(env)
    # TODO: most of my examples have literally had straight-line motions plans

    robot, manipulator, base_manip, ir_model = initialize_openrave(
        env, ARM, min_delta=MIN_DELTA)
    set_manipulator_conf(ir_model.manip, CARRY_CONFIG)
    bodies = {obj: env.GetKinBody(obj) for obj in problem.movable_names}
    surfaces = {surface.name: surface for surface in problem.surfaces}
    open_gripper(manipulator)
    initial_q = Conf(robot.GetConfigurationValues())
    initial_poses = {
        name: Pose(name, get_pose(body))
        for name, body in bodies.iteritems()
    }
    # TODO: just keep track of the movable degrees of freedom
    # GetActiveDOFIndices, GetActiveJointIndices, GetActiveDOFValues
    saver = EnvironmentStateSaver(env)

    #cfree_pose = cfree_pose_fn(env, bodies)
    #cfree_traj = cfree_traj_fn(env, robot, manipulator, body1, body2, all_bodies)

    #base_generator = base_generator_fn(ir_model)

    #base_values = base_values_from_full_config(initial_q.value)
    #goal_values = full_config_from_base_values(base_values + np.array([1, 0, 0]), initial_q.value)
    #goal_conf = Conf(goal_values)
    #return

    ####################

    # TODO - should objects contain their geometry

    cond_streams = [
        EasyListGenStream(inputs=[O, P, G],
                          outputs=[Q, T],
                          conditions=[IsPose(O, P),
                                      IsGrasp(O, G)],
                          effects=[GraspMotion(O, P, G, Q, T)],
                          generator=sample_grasp_traj_fn(
                              base_manip, ir_model, bodies, CARRY_CONFIG)),
        EasyGenStream(inputs=[Q, Q2],
                      outputs=[T],
                      conditions=[],
                      effects=[FreeMotion(Q, Q2, T)],
                      generator=sample_free_base_motion_fn(base_manip, bodies),
                      order=1,
                      max_level=0),
        EasyTestStream(
            inputs=[O, P, O2, P2],
            conditions=[IsPose(O, P), IsPose(O2, P2)],
            effects=[CFreePose(P, P2)],
            test=lambda *args: True,  #cfree_pose,
            eager=True),
        EasyTestStream(inputs=[T, P],
                       conditions=[],
                       effects=[CFreeTraj(T, P)],
                       test=lambda *args: True),
        #test=cfree_traj),
        EasyListGenStream(inputs=[O],
                          outputs=[G],
                          conditions=[],
                          effects=[IsGrasp(O, G)],
                          generator=grasp_generator_fn(bodies, TOP_GRASPS,
                                                       SIDE_GRASPS,
                                                       MAX_GRASPS)),
        EasyListGenStream(inputs=[O, S],
                          outputs=[P],
                          conditions=[],
                          effects=[IsPose(O, P), Stable(P, S)],
                          generator=pose_generator_fn(bodies, surfaces)),

        #EasyGenStream(inputs=[O, P, G], outputs=[Q], conditions=[IsPose(O, P), IsGrasp(O, G)],
        #            effects=[], generator=base_generator),
    ]

    ####################

    constants = []
    initial_atoms = [ConfEq(initial_q), HandEmpty()]
    for name in initial_poses:
        initial_atoms += body_initial_atoms(name, initial_poses, bodies,
                                            surfaces)

    goal_formula = And(
        ConfEq(initial_q), *[
            OnSurface(obj, surface)
            for obj, surface in problem.goal_surfaces.iteritems()
        ])
    #goal_formula = ConfEq(goal_conf)
    #obj, _ = problem.goal_surfaces.items()[0]
    #goal_formula = And(Holding(obj))
    #goal_formula = Holding(obj) # TODO: this cause a bug

    stream_problem = STRIPStreamProblem(initial_atoms, goal_formula,
                                        actions + axioms, cond_streams,
                                        constants)

    print stream_problem
    handles = draw_affine_limits(robot)
    if use_viewer:
        for surface in problem.surfaces:
            surface.draw(env)
        raw_input('Start?')

    max_time = INF
    search_fn = get_fast_downward('eager', max_time=10, verbose=False)
    if use_focused:
        solve = lambda: simple_focused(stream_problem,
                                       search=search_fn,
                                       max_level=INF,
                                       shared=False,
                                       debug=False,
                                       verbose=False,
                                       max_time=max_time)
    else:
        solve = lambda: incremental_planner(stream_problem,
                                            search=search_fn,
                                            frequency=10,
                                            waves=False,
                                            debug=False,
                                            max_time=max_time)
    with env:
        plan, universe = solve()

    print SEPARATOR

    plan = convert_plan(plan)
    if plan is not None:
        print 'Success'
        for i, (action, args) in enumerate(plan):
            print i + 1, action, args
    else:
        print 'Failure'

    ####################

    if plan is not None:
        commands = process_plan(robot, bodies, plan)
        if use_viewer:
            print SEPARATOR
            saver.Restore()
            visualize_solution(commands, step=False)
    raw_input('Finish?')
GREEDY, DFS = True, True
PLANNERS = [
    ('incremental',
     lambda p, s: incremental_planner(p, search=s, frequency=1, verbose=False)
     ),
    # Focused planners
    ('focused', lambda p, s: focused_planner(p,
                                             search=s,
                                             check_feasible=False,
                                             greedy=GREEDY,
                                             dfs=DFS,
                                             verbose=True)),
    ('simple_focused', lambda p, s: simple_focused(p,
                                                   search=s,
                                                   check_feasible=False,
                                                   greedy=GREEDY,
                                                   dfs=DFS,
                                                   verbose=False)),
    ('plan_focused', lambda p, s: plan_focused(p,
                                               search=s,
                                               check_feasible=False,
                                               greedy=GREEDY,
                                               dfs=DFS,
                                               verbose=False)),
]


def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('--planner', help='planner name.', default=None)
    parser.add_argument('--search', help='search name.', default=None)
Exemplo n.º 7
0
def solve_tamp(env):
    viewer = env.GetViewer() is not None
    problem = PROBLEM(env)

    robot, manipulator, base_manip, _ = initialize_openrave(env,
                                                            ARM,
                                                            min_delta=.01)
    bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}
    all_bodies = bodies.values()
    assert len({body.GetKinematicsGeometryHash()
                for body in all_bodies
                }) == 1  # Assuming all objects has the same geometry
    body1 = all_bodies[-1]  # Generic object 1
    body2 = all_bodies[-2] if len(bodies) >= 2 else body1  # Generic object 2
    grasps = problem.known_grasps[:MAX_GRASPS] if problem.known_grasps else []
    poses = problem.known_poses if problem.known_poses else []

    open_gripper(manipulator)
    initial_conf = Conf(
        robot.GetConfigurationValues()[manipulator.GetArmIndices()])

    ####################

    cond_streams = [
        # Pick/place trajectory
        EasyListGenStream(inputs=[P, G],
                          outputs=[Q, T],
                          conditions=[],
                          effects=[GraspMotion(P, G, Q, T)],
                          generator=sample_grasp_traj_fn(
                              env, manipulator, body1, all_bodies)),

        # Move trajectory
        EasyListGenStream(inputs=[Q, Q2],
                          outputs=[T],
                          conditions=[],
                          effects=[FreeMotion(Q, Q2, T)],
                          generator=sample_free_motion_fn(
                              manipulator, base_manip, all_bodies),
                          order=1,
                          max_level=0),
        EasyListGenStream(inputs=[Q, Q2, G],
                          outputs=[T],
                          conditions=[],
                          effects=[HoldingMotion(Q, Q2, G, T)],
                          generator=sample_holding_motion_fn(
                              manipulator, base_manip, body1, all_bodies),
                          order=1,
                          max_level=0),

        # Collisions
        EasyTestStream(inputs=[P, P2],
                       conditions=[],
                       effects=[CFreePose(P, P2)],
                       test=cfree_pose_fn(env, body1, body2),
                       eager=True),
        EasyTestStream(inputs=[T, P],
                       conditions=[],
                       effects=[CFreeTraj(T, P)],
                       test=cfree_traj_fn(env, manipulator, body1, body2,
                                          all_bodies)),
    ]

    ####################

    constants = map(GRASP, grasps) + map(POSE, poses)
    initial_atoms = [
        ConfEq(initial_conf),
        HandEmpty(),
    ] + [PoseEq(obj, pose) for obj, pose in problem.initial_poses.iteritems()]
    goal_formula = And(
        ConfEq(initial_conf),
        *(PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems()))
    stream_problem = STRIPStreamProblem(initial_atoms, goal_formula,
                                        actions + axioms, cond_streams,
                                        constants)

    if viewer: raw_input('Start?')
    search_fn = get_fast_downward('eager', max_time=10, verbose=False)
    #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False)
    solve = lambda: simple_focused(stream_problem,
                                   search=search_fn,
                                   max_level=INF,
                                   shared=False,
                                   debug=False,
                                   verbose=False)
    env.Lock()
    plan, universe = solve()
    env.Unlock()

    print SEPARATOR

    plan = convert_plan(plan)
    if plan is not None:
        print 'Success'
        for i, (action, args) in enumerate(plan):
            print i + 1, action, args
    else:
        print 'Failure'

    ####################

    if viewer and plan is not None:
        print SEPARATOR
        visualize_solution(env, problem, initial_conf, robot, manipulator,
                           bodies, plan)
    raw_input('Finish?')
def solve_countable_tamp(planner, search, visualize, display, verbose=False):
    #tamp_problem = get_grasp_problem(p=3) # 10 | 1000
    #tamp_problem = get_distract_problem(p=3) # 10 | 1000
    #tamp_problem = get_invert_problem(p=3)
    tamp_problem = get_shift_problem(p=3)
    #tamp_problem = get_distract_place_problem(p=40)

    #stream_problem = compile_problem(tamp_problem, stream_fn=generative_streams) # constant_streams | implicit_streams | constant_streams
    stream_problem = compile_problem(tamp_problem)
    print stream_problem
    #stream_problem.operators = stream_problem.convert_axioms_to_effects()
    #stream_problem.replace_axioms()
    #for action in stream_problem.operators:
    #  print action.pddl(True)

    viewer = None
    if visualize:
        from stripstream.pddl.examples.countable_tamp.countable_tamp_viewer import CountableTMPViewer
        viewer = CountableTMPViewer(1, NUM_POSES, title='State', height=250)
        visualize_atoms(viewer, stream_problem.initial_atoms)
        raw_input('Continue?')

    verbose_search = False
    if search == DEFAULT:
        search_fn = DEFAULT_SEARCH
    elif search == BFS:
        search_fn = get_bfs()
    elif search == FAST_DOWNWARD:
        search_fn = get_fast_downward(
            'eager', verbose=verbose_search
        )  # 'dijkstra | astar | wastar1 | wastar2 | wastar3 | eager | lazy
    elif search == FAST_FORWARD:
        search_fn = get_fast_forward(verbose=verbose_search)
    elif search == LAPKT:
        stream_problem.replace_axioms()  # TODO - can I automate this process?
        search_fn = get_lakpt(verbose=verbose_search)
    #elif search == PYPLANNERS:
    #  search_fn = get_pyplanners(verbose=False)
    else:
        raise ValueError(search)

    t0 = time()
    if planner == INCREMENTAL:
        plan, universe = incremental_planner(
            stream_problem, search=search_fn, frequency=1,
            verbose=verbose)  # 1 | 20 | 100 | INF
    elif planner == FOCUSED:
        #plan, universe = focused_planner(stream_problem, search=search_fn, greedy=False, verbose=verbose)
        plan, universe = simple_focused(stream_problem,
                                        search=search_fn,
                                        greedy=True,
                                        dfs=True,
                                        verbose=verbose)
    #elif planner == 'hierarchy':
    #  selector = first_selector # first_selector | all_selector
    #  plan, universe = replan_hierarchy(stream_problem, selector=selector, execute=True, verbose=verbose)
    #elif planner == 'simultaneous':
    #  plan, universe = simultaneous(stream_problem, frequency=frequency, max_time=max_time)
    #elif planner == 'progression':
    #  plan, universe = progression(stream_problem, max_time=max_time)
    else:
        raise ValueError(planner)

    print SEPARATOR
    print 'Planner:', planner
    print 'Search:', search
    print 'Plan:', convert_plan(plan)
    print 'Solved:', plan is not None
    print 'Length:', len(plan) if plan is not None else None
    print 'Time:', time() - t0

    #universe.print_statistics()
    #universe.print_domain_statistics()
    #print SEPARATOR
    #print_plan_stats(plan, universe)

    if display and plan is not None:
        if viewer is None:
            # TODO - unify this across the two
            from stripstream.pddl.examples.countable_tamp.countable_tamp_viewer import CountableTMPViewer
            viewer = CountableTMPViewer(1,
                                        NUM_POSES,
                                        title='State',
                                        height=250)
        print '\nExecuting'
        states = get_states(universe, plan)
        for i, state in enumerate(states):
            viewer.clear()
            viewer.draw_environment()
            visualize_atoms(viewer, state)
            raw_input('%s) %s?' %
                      (i, 'Continue' if i != len(states) - 1 else 'Finish'))
    elif viewer is not None:
        raw_input('\nFinish?')
def solve_tamp(env):
  viewer = env.GetViewer() is not None
  #problem = dantam(env)
  problem = dantam2(env)
  #problem = move_several_4(env)

  robot = env.GetRobots()[0]
  set_base_values(robot, (-.75, .2, -math.pi/2))
  initialize_openrave(env, 'leftarm')
  manipulator = robot.GetActiveManipulator()
  cspace = CSpace.robot_arm(manipulator)
  base_manip = interfaces.BaseManipulation(robot, plannername=None, maxvelmult=None)

  #USE_GRASP_APPROACH = GRASP_APPROACHES.SIDE
  USE_GRASP_APPROACH = GRASP_APPROACHES.TOP
  #USE_GRASP_TYPE = GRASP_TYPES.TOUCH
  USE_GRASP_TYPE = GRASP_TYPES.GRASP

  bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}
  geom_hashes = {body.GetKinematicsGeometryHash() for body in bodies.values()}
  assert len(geom_hashes) == 1 # NOTE - assuming all objects has the same geometry

  all_bodies = bodies.values()
  body1 = all_bodies[-1]
  body2 = all_bodies[-2] if len(bodies) >= 2 else body1
  grasps = get_grasps(env, robot, body1, USE_GRASP_APPROACH, USE_GRASP_TYPE)[:1]
  poses = problem.known_poses if problem.known_poses else []

  ##################################################

  def enable_all(enable):
    for body in all_bodies:
      body.Enable(enable)

  def collision_free(pose1, pose2):
    body1.Enable(True)
    set_pose(body1, pose1.value)
    body2.Enable(True)
    set_pose(body2, pose2.value)
    return not env.CheckCollision(body1, body2)

  def grasp_env_cfree(mt, g):
    enable_all(False) # TODO - base config?
    body1.Enable(True)
    for conf in mt.path():
      set_manipulator_values(manipulator, conf) # NOTE - can also grab
      set_pose(body1, object_trans_from_manip_trans(get_trans(manipulator), g.grasp_trans))
      if env.CheckCollision(body1):
        return False
    return True

  def grasp_pose_cfree(mt, g, p):
    enable_all(False) # TODO - base config?
    body1.Enable(True)
    body2.Enable(True)
    set_pose(body2, p.value)
    for conf in mt.path():
      set_manipulator_values(manipulator, conf)
      set_pose(body1, object_trans_from_manip_trans(get_trans(manipulator), g.grasp_trans))
      if env.CheckCollision(body1, body2):
        return False
    return True

  ##################################################

  """
  class CollisionStream(Stream): # TODO - could make an initial state version of this that doesn't need pose2
    def get_values(self, **kwargs):
      self.enumerated = True
      pose1, pose2 = map(get_value, self.inputs)
      if collision_free(pose1, pose2):
        return [PoseCFree(pose1, pose2)]
      return []
      #return [Movable()] # NOTE - only make movable when it fails a collision check

  CheckedInitial = Pred(POSE) # How should this be handled? The planner will need to revisit on the next state anyways
  class EnvCollisionStream(Stream): # NOTE - I could also make an environment OBJECT which I mutate. I'm kind of doing that now
    movable = []
    def get_values(self, **kwargs):
      self.enumerated = True
      pose, = map(get_value, self.inputs)
      results = [CheckedInitial(pose)]
      for obj, pose2 in problem.initial_poses.iteritems():
        if obj not in self.movable and collision_free(pose, pose2):
          pass
          #results.append(PoseCFree(pose, pose2))
        else:
          self.movable.append(obj)
          results.append(PoseEq(obj, pose2))
          #results.append(Movable(obj))
      if results:
        pass # NOTE - I could make this fail if there is a collision
        # I could prevent the binding by directly adding CheckedInitial to the universe
        # In general, I probably can just mutate the problem however I see fit here
      return results
  """

  ##################################################

  # NOTE - can do pose, approach manip, true approach traj, motion plan

  # NOTE - can make something that produces approach trajectories

  def get_manip_vector(pose, grasp):
    manip_trans, approach_vector = manip_from_pose_grasp(pose, grasp)
    #enable_all(False)
    #if manipulator.CheckEndEffectorCollision(manip_trans):
    #  return None
    return ManipVector(manip_trans, approach_vector)

  def sample_ik(pose, grasp, base_conf): # TODO - make this return the grasp
    enable_all(False)
    set_base_values(robot, base_conf.value)
    body1.Enable(True)
    set_pose(body1, pose.value)
    manip_vector = get_manip_vector(pose, grasp)
    grasp_config = inverse_kinematics_helper(env, robot, manip_vector.manip_trans) # NOTE - maybe need to find all IK solutions
    #print manipulator.CheckEndEffectorCollision(manip_trans)
    if grasp_config is not None:
      yield [Config(grasp_config)]
    #traj = workspace_traj_helper(base_manip, approach_vector)

  def sample_grasp_traj(pose, grasp, base_conf):
    enable_all(False)
    set_base_values(robot, base_conf.value)
    body1.Enable(True)
    set_pose(body1, pose.value)
    manip_vector = get_manip_vector(pose, grasp)
    grasp_config = inverse_kinematics_helper(env, robot, manip_vector.manip_trans) # NOTE - maybe need to find all IK solutions
    if grasp_config is None: return

    set_manipulator_values(manipulator, grasp_config)
    grasp_traj = workspace_traj_helper(base_manip, manip_vector.approach_vector)
    if grasp_config is None: return
    yield [(Config(grasp_traj.end()), grasp_traj)]

  ##################################################

  # NOTE - can either include the held object in the traj or have a special condition that not colliding

  def sample_arm_traj(mq1, mq2, bq): # TODO - need to add holding back in
    yield None
    #enable_all(False)
    #with robot:
    #  set_base_values(robot, bq.value)
    #  pass


  # TODO - does it make sense to make a new stream for the biasing or to continuously just pass things
  # I suppose I could cache the state or full plan as context

  class MotionStream(Stream): # TODO - maybe make this produce the correct values
    num = 0
    #def get_values(self, **kwargs):
    #  self.enumerated = True
    #  mq1, mq2, bq = map(get_value, self.inputs)
    #  #mt = None
    #  mt = MotionStream.num
    #  MotionStream.num += 1 # Ensures all are unique
    #  return [ManipMotion(mq1, mq2, bq, mt)]
    def sample_motion_plan(self, mq1, mq2, bq):
      set_manipulator_values(manipulator, mq1.value)
      set_base_values(robot, bq.value)
      return motion_plan(env, cspace, mq2.value, self_collisions=True)
    def get_values(self, universe, dependent_atoms=set(), **kwargs):
      mq1, mq2, bq = map(get_value, self.inputs)

      collision_atoms = filter(lambda atom: atom.predicate in [MTrajGraspCFree, MTrajPoseCFree], dependent_atoms)
      collision_params = {atom: atom.args[0] for atom in collision_atoms}
      grasp = None
      for atom in collision_atoms:
        if atom.predicate is MTrajGraspCFree:
          assert grasp is None # Can't have two grasps
          _, grasp = map(get_value, atom.args)
      placed = []
      for atom in collision_atoms:
        if atom.predicate is MTrajPoseCFree:
          _, pose = map(get_value, atom.args)
          placed.append(pose)
      #placed, grasp = [], None
      print grasp, placed

      if placed or grasp:
        assert len(placed) <= len(all_bodies) # How would I handle many constraints on the same traj?
        enable_all(False)
        for b, p in zip(all_bodies, placed):
          b.Enable(True)
          set_pose(b, p.value)
        if grasp:
          assert grasp is None or len(placed) <= len(all_bodies)-1
          set_pose(body1, object_trans_from_manip_trans(get_trans(manipulator), grasp.grasp_trans))
          robot.Grab(body1)

        mt = self.sample_motion_plan(mq1, mq2, bq)
        if grasp: robot.Release(body1)
        if mt:
          self.enumerated = True # NOTE - if satisfies all constraints then won't need another. Not true. What if called with different grasps...
          # TODO - could always hash this trajectory for the current set of constraints
          bound_collision_atoms = [atom.instantiate({collision_params[atom]: MTRAJ(mt)}) for atom in collision_atoms]
          #bound_collision_atoms = []
          return [ManipMotion(mq1, mq2, bq, mt)] + bound_collision_atoms
        raise ValueError()

      enable_all(False)
      mt = self.sample_motion_plan(mq1, mq2, bq)
      if mt:
        return [ManipMotion(mq1, mq2, bq, mt)]
      return []

  ##################################################

  cond_streams = [
    #MultiEasyGenStream(inputs=[O], outputs=[P], conditions=[], effects=[LegalPose(O, P)], generator=sample_poses),

    #EasyGenStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[],
    #              effects=[ManipMotion(MQ, MQ2, BQ, MT)], generator=sample_arm_traj),
    ClassStream(inputs=[MQ, MQ2, BQ], outputs=[MT], conditions=[],
                effects=[ManipMotion(MQ, MQ2, BQ, MT)], StreamClass=MotionStream, order=1, max_level=0),

    #MultiEasyGenStream(inputs=[P, G, BQ], outputs=[MQ], conditions=[],
    #                   effects=[Kin(P, G, BQ, MQ)], generator=sample_ik),
    EasyListGenStream(inputs=[P, G, BQ], outputs=[MQ, GT], conditions=[],
                      effects=[GraspTraj(P, G, BQ, MQ, GT)], generator=sample_grasp_traj),

    #EasyTestStream(inputs=[O, P, T], conditions=[], effects=[CFree(O, P, T)],
    #            test=collision_free, eager=True),

    EasyTestStream(inputs=[P, P2], conditions=[], effects=[PoseCFree(P, P2)],
                test=collision_free, eager=True),
    #ClassStream(inputs=[P, P2], conditions=[], outputs=[],
    #            effects=[PoseCFree(P, P2)], StreamClass=CollisionStream, eager=True),


    EasyTestStream(inputs=[MT, P], conditions=[], effects=[MTrajPoseCFree(MT, P)],
                test=lambda mt, p: True, eager=True),
    EasyTestStream(inputs=[MT, G], conditions=[], effects=[MTrajGraspCFree(MT, G)],
                test=lambda mt, g: True, eager=True),
    EasyTestStream(inputs=[MT, G, P], conditions=[], effects=[MTrajGraspPoseCFree(MT, G, P)],
                test=lambda mt, g, p: True, eager=True),
    #ClassStream(inputs=[P], conditions=[], outputs=[],
    #            effects=[CheckedInitial(P)], StreamClass=EnvCollisionStream),
  ]

  ##################################################

  constants = map(GRASP, grasps) + map(POSE, poses)
  initial_full = Config(get_full_config(robot))
  initial_base = get_base_conf(initial_full)
  initial_manip = get_arm_conf(manipulator, initial_full)
  initial_atoms = [
    BaseEq(initial_base),
    ManipEq(initial_manip),
    HandEmpty(),
  ] + [
    PoseEq(obj, pose) for obj, pose in problem.initial_poses.iteritems()
  ]
  goal_formula = And(ManipEq(initial_manip), *(PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems()))
  stream_problem = STRIPStreamProblem(initial_atoms, goal_formula, operators, cond_streams, constants)

  if viewer: raw_input('Start?')
  search_fn = get_fast_downward('eager')
  #plan, universe = incremental_planner(stream_problem, search=search_fn, frequency=INF, waves=True, debug=False) # 1 | 20 | 100 | INF
  #plan, _ = focused_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False) # 1 | 20 | 100 | INF
  #plan, universe = simple_focused(stream_problem, search=search_fn, max_level=INF, debug=False, verbose=False) # 1 | 20 | 100 | INF
  #plan, _ = plan_focused(stream_problem, search=search_fn, debug=False) # 1 | 20 | 100 | INF

  from misc.profiling import run_profile, str_profile
  #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=INF, waves=True, debug=False)
  solve = lambda: simple_focused(stream_problem, search=search_fn, max_level=INF, shared=False, debug=False, verbose=True)
  #with env:
  env.Lock()
  (plan, universe), prof = run_profile(solve)
  env.Unlock()

  print SEPARATOR
  universe.print_domain_statistics()
  universe.print_statistics()
  print SEPARATOR
  print str_profile(prof)
  print SEPARATOR

  plan = convert_plan(plan)
  if plan is not None:
    print 'Success'
    for i, (action, args) in enumerate(plan):
      print i+1, action, args
  else:
    print 'Failure'

  ##################################################

  def step_path(traj):
    #for j, conf in enumerate(traj.path()):
    for j, conf in enumerate([traj.end()]):
      set_manipulator_values(manipulator, conf)
      raw_input('%s/%s) Step?'%(j, len(traj.path())))

  if viewer and plan is not None:
    print SEPARATOR
    # Resets the initial state
    open_gripper2(manipulator)
    set_base_values(robot, initial_base.value)
    set_manipulator_values(manipulator, initial_manip.value)
    for obj, pose in problem.initial_poses.iteritems():
      set_pose(bodies[obj], pose.value)

    for i, (action, args) in enumerate(plan):
      raw_input('\n%s/%s) Next?'%(i, len(plan)))
      if action.name == 'move_arm':
        mq1, mq2, bq, mt = args
        #set_manipulator_values(manipulator, mq2.value)
        step_path(mt)
      elif action.name == 'pick':
        #o, p, q, mq, bq = args
        o, p, g, mq, bq, gt = args
        step_path(gt.reverse())
        #grasp_gripper2(manipulator, g) # NOTE - g currently isn't a real grasp
        robot.Grab(bodies[o])
        step_path(gt)
      elif action.name == 'place':
        #o, p, q, mq, bq = args
        o, p, g, mq, bq, gt = args
        step_path(gt.reverse())
        robot.Release(bodies[o])
        #open_gripper2(manipulator)
        step_path(gt)
      else:
        raise ValueError(action.name)
      env.UpdatePublishedBodies()
  raw_input('Finish?')
def solve_tamp(env):
  viewer = env.GetViewer() is not None
  problem = PROBLEM(env)

  robot = env.GetRobots()[0]
  set_base_values(robot, (-.75, .2, -math.pi/2))
  initialize_openrave(env, ARM)
  manipulator = robot.GetActiveManipulator()
  cspace = CSpace.robot_arm(manipulator)
  base_manip = interfaces.BaseManipulation(robot, plannername=None, maxvelmult=None)

  bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}
  geom_hashes = {body.GetKinematicsGeometryHash() for body in bodies.values()}
  assert len(geom_hashes) == 1 # NOTE - assuming all objects has the same geometry

  all_bodies = bodies.values()
  body1 = all_bodies[-1]
  body2 = all_bodies[-2] if len(bodies) >= 2 else body1
  grasps = get_grasps(env, robot, body1, USE_GRASP_APPROACH, USE_GRASP_TYPE)[:1]
  poses = problem.known_poses if problem.known_poses else []

  open_gripper2(manipulator)
  initial_manip = get_arm_conf(manipulator, Config(get_full_config(robot)))

  def enable_all(enable):
    for body in all_bodies:
      body.Enable(enable)

  ####################

  def cfree_pose_pose(pose1, pose2):
    body1.Enable(True)
    set_pose(body1, pose1.value)
    body2.Enable(True)
    set_pose(body2, pose2.value)
    return not env.CheckCollision(body1, body2)

  def cfree_gtraj_pose(gt, p):
    return cfree_mtraj_pose(gt, p) and cfree_mtraj_grasp_pose(gt, gt.grasp, p)

  ####################

  def cfree_mtraj_grasp(mt, g):
    enable_all(False)
    body1.Enable(True)
    for conf in mt.path():
      set_manipulator_values(manipulator, conf) # NOTE - can also grab
      set_pose(body1, object_trans_from_manip_trans(get_trans(manipulator), g.grasp_trans))
      if env.CheckCollision(body1):
        print 'cfree_mtraj_grasp'
        return False
    return True

  def cfree_mtraj_pose(mt, p):
    enable_all(False)
    body2.Enable(True)
    set_pose(body2, p.value)
    for conf in mt.path():
      set_manipulator_values(manipulator, conf)
      if env.CheckCollision(robot, body2):
        print 'cfree_mtraj_pose'
        return False
    return True

  def cfree_mtraj_grasp_pose(mt, g, p):
    enable_all(False)
    body1.Enable(True)
    body2.Enable(True)
    set_pose(body2, p.value)
    for conf in mt.path():
      set_manipulator_values(manipulator, conf)
      set_pose(body1, object_trans_from_manip_trans(get_trans(manipulator), g.grasp_trans))
      if env.CheckCollision(body1, body2):
        print 'cfree_mtraj_grasp_pose'
        return False
    return True

  ####################

  def sample_grasp_traj(pose, grasp):
    enable_all(False)
    body1.Enable(True)
    set_pose(body1, pose.value)
    manip_trans, approach_vector = manip_from_pose_grasp(pose, grasp)
    grasp_config = inverse_kinematics_helper(env, robot, manip_trans)
    if grasp_config is None: return

    set_manipulator_values(manipulator, grasp_config)
    robot.Grab(body1)
    grasp_traj = workspace_traj_helper(base_manip, approach_vector)
    robot.Release(body1)
    if grasp_traj is None: return
    grasp_traj.grasp = grasp
    yield [(Config(grasp_traj.end()), grasp_traj)]

  def sample_manip_motion(mq1, mq2):
    enable_all(False)
    set_manipulator_values(manipulator, mq1.value)
    mt = motion_plan(env, cspace, mq2.value, self_collisions=True)
    if not mt: return
    yield [(mt,)]

  ####################

  cond_streams = [
    # Pick/place trajectory
    EasyListGenStream(inputs=[P, G], outputs=[MQ, GT], conditions=[],
                      effects=[GraspMotion(P, G, MQ, GT)], generator=sample_grasp_traj),

    # Move trajectory
    EasyListGenStream(inputs=[MQ, MQ2], outputs=[MT], conditions=[],
                      effects=[ManipMotion(MQ, MQ2, MT)], generator=sample_manip_motion, order=1, max_level=0),

    # Pick/place collisions
    EasyTestStream(inputs=[P, P2], conditions=[], effects=[CFreePosePose(P, P2)],
                test=cfree_pose_pose, eager=True),
    EasyTestStream(inputs=[GT, P], conditions=[], effects=[CFreeGTrajPose(GT, P)],
                test=cfree_gtraj_pose),

    # Move collisions
    EasyTestStream(inputs=[MT, P], conditions=[], effects=[CFreeMTrajPose(MT, P)],
                test=cfree_mtraj_pose),
    EasyTestStream(inputs=[MT, G], conditions=[], effects=[CFreeMTrajGrasp(MT, G)],
                test=cfree_mtraj_grasp),
    EasyTestStream(inputs=[MT, G, P], conditions=[], effects=[CFreeMTrajGraspPose(MT, G, P)],
                test=cfree_mtraj_grasp_pose),
  ]

  ####################

  constants = map(GRASP, grasps) + map(POSE, poses)
  initial_atoms = [
    ManipEq(initial_manip),
    HandEmpty(),
  ] + [
    PoseEq(obj, pose) for obj, pose in problem.initial_poses.iteritems()
  ]
  goal_formula = And(ManipEq(initial_manip), *(PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems()))
  stream_problem = STRIPStreamProblem(initial_atoms, goal_formula, actions + axioms, cond_streams, constants)

  if viewer: raw_input('Start?')
  search_fn = get_fast_downward('eager', max_time=10)
  #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False)
  solve = lambda: simple_focused(stream_problem, search=search_fn, max_level=INF, shared=False, debug=False, verbose=False)
  env.Lock()
  plan, universe = solve()
  env.Unlock()

  print SEPARATOR

  plan = convert_plan(plan)
  if plan is not None:
    print 'Success'
    for i, (action, args) in enumerate(plan):
      print i+1, action, args
  else:
    print 'Failure'

  ####################

  def step_path(traj):
    #for j, conf in enumerate(traj.path()):
    for j, conf in enumerate([traj.end()]):
      set_manipulator_values(manipulator, conf)
      raw_input('%s/%s) Step?'%(j, len(traj.path())))

  if viewer and plan is not None:
    print SEPARATOR
    # Resets the initial state
    set_manipulator_values(manipulator, initial_manip.value)
    for obj, pose in problem.initial_poses.iteritems():
      set_pose(bodies[obj], pose.value)

    for i, (action, args) in enumerate(plan):
      raw_input('\n%s/%s) Next?'%(i, len(plan)))
      if action.name == 'move':
        mq1, mq2, mt = args
        step_path(mt)
      elif action.name == 'pick':
        o, p, g, mq, gt = args
        step_path(gt.reverse())
        robot.Grab(bodies[o])
        step_path(gt)
      elif action.name == 'place':
        o, p, g, mq, gt = args
        step_path(gt.reverse())
        robot.Release(bodies[o])
        step_path(gt)
      else:
        raise ValueError(action.name)
      env.UpdatePublishedBodies()
  raw_input('Finish?')
def solve_tamp(env):
    viewer = env.GetViewer() is not None
    problem = PROBLEM(env)

    robot = env.GetRobots()[0]
    set_base_values(robot, (-.75, .2, -math.pi / 2))
    initialize_openrave(env, ARM)
    manipulator = robot.GetActiveManipulator()
    cspace = CSpace.robot_arm(manipulator)
    base_manip = interfaces.BaseManipulation(robot,
                                             plannername=None,
                                             maxvelmult=None)

    bodies = {obj: env.GetKinBody(obj) for obj in problem.object_names}
    geom_hashes = {
        body.GetKinematicsGeometryHash()
        for body in bodies.values()
    }
    assert len(
        geom_hashes) == 1  # NOTE - assuming all objects has the same geometry

    all_bodies = bodies.values()
    body1 = all_bodies[-1]
    body2 = all_bodies[-2] if len(bodies) >= 2 else body1
    grasps = get_grasps(env, robot, body1, USE_GRASP_APPROACH,
                        USE_GRASP_TYPE)[:1]
    poses = problem.known_poses if problem.known_poses else []

    open_gripper2(manipulator)
    initial_manip = get_arm_conf(manipulator, Config(get_full_config(robot)))

    def enable_all(enable):
        for body in all_bodies:
            body.Enable(enable)

    ####################

    def cfree_pose_pose(pose1, pose2):
        body1.Enable(True)
        set_pose(body1, pose1.value)
        body2.Enable(True)
        set_pose(body2, pose2.value)
        return not env.CheckCollision(body1, body2)

    def cfree_gtraj_pose(gt, p):
        return cfree_mtraj_pose(gt, p) and cfree_mtraj_grasp_pose(
            gt, gt.grasp, p)

    ####################

    def cfree_mtraj_grasp(mt, g):
        enable_all(False)
        body1.Enable(True)
        for conf in mt.path():
            set_manipulator_values(manipulator, conf)  # NOTE - can also grab
            set_pose(
                body1,
                object_trans_from_manip_trans(get_trans(manipulator),
                                              g.grasp_trans))
            if env.CheckCollision(body1):
                return False
        return True

    def cfree_mtraj_pose(mt, p):
        enable_all(False)
        body2.Enable(True)
        set_pose(body2, p.value)
        for conf in mt.path():
            set_manipulator_values(manipulator, conf)
            if env.CheckCollision(body2):
                return False
        return True

    def cfree_mtraj_grasp_pose(mt, g, p):
        enable_all(False)
        body1.Enable(True)
        body2.Enable(True)
        set_pose(body2, p.value)
        for conf in mt.path():
            set_manipulator_values(manipulator, conf)
            set_pose(
                body1,
                object_trans_from_manip_trans(get_trans(manipulator),
                                              g.grasp_trans))
            if env.CheckCollision(body1, body2):
                return False
        return True

    ####################

    def sample_grasp_traj(pose, grasp):
        enable_all(False)
        body1.Enable(True)
        set_pose(body1, pose.value)
        manip_trans, approach_vector = manip_from_pose_grasp(pose, grasp)
        grasp_config = inverse_kinematics_helper(env, robot, manip_trans)
        if grasp_config is None: return

        set_manipulator_values(manipulator, grasp_config)
        robot.Grab(body1)
        grasp_traj = workspace_traj_helper(base_manip, approach_vector)
        robot.Release(body1)
        if grasp_traj is None: return
        grasp_traj.grasp = grasp
        yield [(Config(grasp_traj.end()), grasp_traj)]

    class MotionStream(Stream):
        def get_values(self, universe, dependent_atoms=set(), **kwargs):
            mq1, mq2 = map(get_value, self.inputs)

            collision_atoms = filter(
                lambda atom: atom.predicate in
                [CFreeMTrajGrasp, CFreeMTrajPose], dependent_atoms)
            collision_params = {atom: atom.args[0] for atom in collision_atoms}
            grasp = None
            for atom in collision_atoms:
                if atom.predicate is CFreeMTrajGrasp:
                    assert grasp is None  # Can't have two grasps
                    _, grasp = map(get_value, atom.args)
            placed = []
            for atom in collision_atoms:
                if atom.predicate is CFreeMTrajPose:
                    _, pose = map(get_value, atom.args)
                    placed.append(pose)
            #placed, grasp = [], None
            #print grasp, placed

            if placed or grasp:
                assert len(placed) <= len(all_bodies)
                enable_all(False)
                for b, p in zip(all_bodies, placed):
                    b.Enable(True)
                    set_pose(b, p.value)
                if grasp:
                    assert grasp is None or len(placed) <= len(all_bodies) - 1
                    set_pose(
                        body1,
                        object_trans_from_manip_trans(get_trans(manipulator),
                                                      grasp.grasp_trans))
                    robot.Grab(body1)

                set_manipulator_values(manipulator, mq1.value)
                mt = motion_plan(env, cspace, mq2.value, self_collisions=True)
                if grasp: robot.Release(body1)
                if mt:
                    self.enumerated = True  # NOTE - if satisfies all constraints then won't need another. Not true. What if called with different grasps...
                    # TODO - could always hash this trajectory for the current set of constraints
                    bound_collision_atoms = [
                        atom.instantiate({collision_params[atom]: MTRAJ(mt)})
                        for atom in collision_atoms
                    ]
                    #bound_collision_atoms = []
                    return [ManipMotion(mq1, mq2, mt)] + bound_collision_atoms
                raise ValueError()

            enable_all(False)
            set_manipulator_values(manipulator, mq1.value)
            mt = motion_plan(env, cspace, mq2.value, self_collisions=True)
            if mt:
                return [ManipMotion(mq1, mq2, mt)]
            return []

    ####################

    cond_streams = [
        # Pick/place trajectory
        EasyListGenStream(inputs=[P, G],
                          outputs=[MQ, GT],
                          conditions=[],
                          effects=[GraspMotion(P, G, MQ, GT)],
                          generator=sample_grasp_traj),

        # Move trajectory
        ClassStream(inputs=[MQ, MQ2],
                    outputs=[MT],
                    conditions=[],
                    effects=[ManipMotion(MQ, MQ2, MT)],
                    StreamClass=MotionStream,
                    order=1,
                    max_level=0),

        # Pick/place collisions
        EasyTestStream(inputs=[P, P2],
                       conditions=[],
                       effects=[CFreePosePose(P, P2)],
                       test=cfree_pose_pose,
                       eager=True),
        EasyTestStream(inputs=[GT, P],
                       conditions=[],
                       effects=[CFreeGTrajPose(GT, P)],
                       test=cfree_gtraj_pose),

        # Move collisions
        EasyTestStream(inputs=[MT, P],
                       conditions=[],
                       effects=[CFreeMTrajPose(MT, P)],
                       test=cfree_mtraj_pose),
        EasyTestStream(inputs=[MT, G],
                       conditions=[],
                       effects=[CFreeMTrajGrasp(MT, G)],
                       test=cfree_mtraj_grasp),
        EasyTestStream(inputs=[MT, G, P],
                       conditions=[],
                       effects=[CFreeMTrajGraspPose(MT, G, P)],
                       test=cfree_mtraj_grasp_pose),
    ]

    ####################

    constants = map(GRASP, grasps) + map(POSE, poses)
    initial_atoms = [
        ManipEq(initial_manip),
        HandEmpty(),
    ] + [PoseEq(obj, pose) for obj, pose in problem.initial_poses.iteritems()]
    goal_formula = And(
        ManipEq(initial_manip),
        *(PoseEq(obj, pose) for obj, pose in problem.goal_poses.iteritems()))
    stream_problem = STRIPStreamProblem(initial_atoms, goal_formula,
                                        actions + axioms, cond_streams,
                                        constants)

    if viewer: raw_input('Start?')
    search_fn = get_fast_downward('eager')
    #plan, universe = incremental_planner(stream_problem, search=search_fn, frequency=INF, waves=True, debug=False) # 1 | 20 | 100 | INF
    #plan, _ = focused_planner(stream_problem, search=search_fn, frequency=1, waves=True, debug=False) # 1 | 20 | 100 | INF
    #plan, universe = simple_focused(stream_problem, search=search_fn, max_level=INF, debug=False, verbose=False) # 1 | 20 | 100 | INF
    #plan, _ = plan_focused(stream_problem, search=search_fn, debug=False) # 1 | 20 | 100 | INF

    from misc.profiling import run_profile, str_profile
    #solve = lambda: incremental_planner(stream_problem, search=search_fn, frequency=INF, waves=True, debug=False)
    solve = lambda: simple_focused(stream_problem,
                                   search=search_fn,
                                   max_level=INF,
                                   shared=False,
                                   debug=False,
                                   verbose=False)
    #with env:
    env.Lock()
    (plan, universe), prof = run_profile(solve)
    env.Unlock()

    print SEPARATOR
    universe.print_domain_statistics()
    universe.print_statistics()
    print SEPARATOR
    print str_profile(prof)
    print SEPARATOR

    plan = convert_plan(plan)
    if plan is not None:
        print 'Success'
        for i, (action, args) in enumerate(plan):
            print i + 1, action, args
    else:
        print 'Failure'

    ####################

    def step_path(traj):
        #for j, conf in enumerate(traj.path()):
        for j, conf in enumerate([traj.end()]):
            set_manipulator_values(manipulator, conf)
            raw_input('%s/%s) Step?' % (j, len(traj.path())))

    if viewer and plan is not None:
        print SEPARATOR
        # Resets the initial state
        set_manipulator_values(manipulator, initial_manip.value)
        for obj, pose in problem.initial_poses.iteritems():
            set_pose(bodies[obj], pose.value)

        for i, (action, args) in enumerate(plan):
            raw_input('\n%s/%s) Next?' % (i, len(plan)))
            if action.name == 'move':
                mq1, mq2, mt = args
                step_path(mt)
            elif action.name == 'pick':
                o, p, g, mq, gt = args
                step_path(gt.reverse())
                robot.Grab(bodies[o])
                step_path(gt)
            elif action.name == 'place':
                o, p, g, mq, gt = args
                step_path(gt.reverse())
                robot.Release(bodies[o])
                step_path(gt)
            else:
                raise ValueError(action.name)
            env.UpdatePublishedBodies()
    raw_input('Finish?')