Exemplo n.º 1
0
 def __init__(self, model_params=None, json_path=None):
     super().__init__()
     self.model_params = get_from_dicts(model_params, default_parameters)
     self.model_params = get_from_json(json_path, self.model_params)
     self._sanity_checks()
     logging.info("Model parameters : %s", self.model_params)
     self.input_type = self.model_params['input']['type']
     self.model_dir = self.model_params['output']['save_model_dir']
     self.config = get_tf_config(self.model_params)
     self.model = tf.estimator.Estimator(
         model_fn=self.model_fn, model_dir=self.model_dir,
         params=self.model_params, config=self.config)
Exemplo n.º 2
0
def test_get_tf_config():
    params = {'training': {'mode': 'test'}}
    with pytest.raises(ValueError,
                       match="mode should be local or distributed"):
        get_tf_config(params)

    # conf for local training
    params.update({
        'training': {
            'mode': 'local',
            'log_steps': 10
        },
        'resource': {
            'num_cpu': 4,
            'num_thread': 4,
            'num_gpu': 1
        }
    })
    get_tf_config(params)

    # conf for distributed training
    params.update({
        'training': {
            'mode': 'distributed',
            'log_steps': 10
        },
        'resource': {
            'num_cpu': 4,
            'num_thread': 4,
            'num_gpu': 2
        }
    })
    get_tf_config(params)
Exemplo n.º 3
0
def test_get_tf_config():
    params = {"training": {"mode": "test"}}
    with pytest.raises(ValueError, match="mode should be local or distributed"):
        get_tf_config(params)

    # conf for local training
    params.update(
        {
            "training": {"mode": "local", "log_steps": 10},
            "resource": {"num_cpu": 4, "num_thread": 4, "num_gpu": 1},
        }
    )
    get_tf_config(params)

    # conf for distributed training
    params.update(
        {
            "training": {"mode": "distributed", "log_steps": 10},
            "resource": {"num_cpu": 4, "num_thread": 4, "num_gpu": 2},
        }
    )
    get_tf_config(params)