shuffle=True,
                                          num_workers=2)
augloader1 = torch.utils.data.DataLoader(augset1,
                                         batch_size=256,
                                         shuffle=True,
                                         num_workers=2)
augloader2 = torch.utils.data.DataLoader(augset2,
                                         batch_size=256,
                                         shuffle=True,
                                         num_workers=2)
augloader3 = torch.utils.data.DataLoader(augset3,
                                         batch_size=256,
                                         shuffle=True,
                                         num_workers=2)

net = get_model()
checkPointDir = './model.pth'
checkpoint = torch.load(checkPointDir)
net.load_state_dict(checkpoint)
net = net.cuda()

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=0.001)

print('Start Training')

net.train()
for epoch in range(100):
    running_loss = 0.0
    for i, data in enumerate(trainloader):  #Original training set
        # get the inputs; data is a list of [inputs, labels]

# ==========================================================================
# ==========================================================================
from submission import get_model, eval_transform, team_id, team_name, email_address

trainset = CustomDataset(root='./dataset',
                         split="train",
                         transform=train_transform)
# trainset = addIndexToTrainData(trainset)
trainloader = torch.utils.data.DataLoader(trainset,
                                          batch_size=256,
                                          shuffle=True,
                                          num_workers=2)

net = get_model().cuda()
net = torch.nn.DataParallel(net)
net = net.cuda()
# trainLabeledImage(net, trainloader)
#
unLabeledSet = CustomDataset(root='./dataset',
                             split="unlabeled",
                             transform=train_transform)
xxx = addIndexToTrainData(unLabeledSet)
# unLabeledLoader = torch.utils.data.DataLoader(unLabeledSet, batch_size = 10, shuffle=True, num_workers = 2)
#
# net = get_model()
# checkPointDir = './checkPoint/net_demo.pth'
# # checkpoint = torch.load(args.checkpoint_path)
# checkpoint = torch.load(checkPointDir)
# net.load_state_dict(checkpoint)