Exemplo n.º 1
0
def dispatch_entry(config, entry, dry_run=None, log_name=LOGGER):    
    """Dispacthes one entry of distribution list"""
    
    logger          = loghelper.get_logger(log_name)
    
    address   = expand(entry['mailto'], config)
    subject   = expand(entry['subject'], config)
    body      = expand(entry['body'], config)
    from_addr = expand(entry['from'], config)
    attachments = [expand(a, config) for a in entry['attach']]

    logger.debug('dispatch_entry() called')
    
    if type(attachments)==type([]):
        a_arg = ' '.join(['-a %s' % a for a in attachments])
    else:
        a_arg = '-a %s' % attachments 
    
    if 'cc' in  entry:
        cc_arg = '-c %s' % entry['cc']
    else:
        cc_arg = ''

    if 'content_type' in entry:
        ct_arg = '-e "my_hdr Content-Type: :%s"' % dist['content_type']
    else:
        ct_arg = ''

        
    cmd = """EMAIL="%s" mutt %s -s"%s" %s %s -- %s < %s """ %(from_addr, ct_arg, subject, a_arg, cc_arg, address, body)
    logger.debug(cmd)
    logger.debug(dry_run)
    if not dry_run:
        subprocess.call(cmd, shell=True)
Exemplo n.º 2
0
def dispatch_entry(config, entry, dry_run=None, log_name=LOGGER):    
    """Dispacthes one entry of distribution list"""
    
    logger          = loghelper.get_logger(log_name)
    
    address   = expand(entry['mailto'], config)
    subject   = expand(entry['subject'], config)
    body      = expand(entry['body'], config)
    from_addr = expand(entry['from'], config)
    attachments = [expand(a, config) for a in entry['attach']]

    logger.debug('dispatch_entry() called')
    
    if type(attachments)==type([]):
        a_arg = ' '.join(['-a %s' % a for a in attachments])
    else:
        a_arg = '-a %s' % attachments 
    
    if 'cc' in  entry:
        cc_arg = '-c %s' % entry['cc']
    else:
        cc_arg = ''

    if 'content_type' in entry:
        ct_arg = '-e "my_hdr Content-Type: :%s"' % dist['content_type']
    else:
        ct_arg = ''

        
    cmd = """EMAIL="%s" mutt %s -s"%s" %s %s -- %s < %s """ %(from_addr, ct_arg, subject, a_arg, cc_arg, address, body)
    logger.debug(cmd)
    if not dry_run:
        subprocess.call(cmd, shell=True)
Exemplo n.º 3
0
def dump(files, entry, scope, log_name=LOGGER):

    logger = loghelper.get_logger(log_name)
    vars = entry['tseries_vars']
    global_atts = entry['global_atts']
    var_atts = entry['var_atts']
    coord_vars = entry['coord_vars']
    format = entry['format'].strip()

    #logger.warn("subsetting at read time is not implemented")
    # Read all data into memory as pandas Series objects
    logger.debug("ncdump called with arguments")
    logger.debug("\t files: %s" % str(files))
    logger.debug("\t vars: %s" % str(vars))
    logger.debug("\t global_atts: %s" % str(global_atts))
    logger.debug("\t var_atts: %s" % str(var_atts))
    logger.debug("\t coord_vars: %s" % str(coord_vars))
    logger.debug("\t log_name: %s" % str(log_name))

    #for file in files:
    #logger.debug(file)
    frame = frame_from_nc(files, vars, global_atts, var_atts, coord_vars,
                          log_name)

    if format not in FORMATS:
        logger.error("format %s not understood" % format)
        raise UnknownFormat("format not understood")

    if format == 'txt':
        pass
        #write_txt_files(frame, entry['dir'], entry['dimspec'], log_name)

    elif format == 'json':
        write_json_files(frame, entry['dir'], expand(entry['fname'], scope),
                         entry['tseries_vars'], entry['dimspec'],
                         entry['drop'], entry['rename'], entry['float_format'],
                         log_name)

    elif format == 'csv':
        write_csv_files(frame,
                        entry['dir'],
                        expand(entry['fname'], scope),
                        entry['tseries_vars'],
                        entry['dimspec'],
                        entry['drop'],
                        values='value',
                        rows=entry['rows'],
                        cols=entry['cols'],
                        sort_by=entry['sort_by'],
                        rename=entry['rename'],
                        float_format=entry['float_format'],
                        na_rep=entry['na_rep'],
                        log_name=log_name)

    elif format == 'aot':
        write_aot_files(frame, entry['dir'])
Exemplo n.º 4
0
def ncdump(config):
    
    logger = loghelper.get_logger(config['log.name'])
    
    # subset of config to be used for expanding filenames
    scope = {'init_time' : config['init_time'],
             'grid_id'   : config['grid_id']}
             

    
    for name, entry in config['ncdump'].items():
        logger.debug("procesing entry %s " % name)
        
        if config.get('<files>'):
            files = config['<files>']
            if type(files)!=type([]):
                files = [files]
        else:
            tseries_files = expand(entry['tseries_file'], config)
            logger.debug("expanding file list from pattern and init time")
            #logger.debug(tseries_files)
            
            files = glob.glob(tseries_files)
            logger.debug("found %d files" % len(files))

        dump(files, entry, scope, log_name=config['log.name'])
Exemplo n.º 5
0
def ncdump(config):
    
    logger = loghelper.get_logger(config['log.name'])
    
    # subset of config to be used for expanding filenames
    scope = {'init_time' : config['init_time'],
             'grid_id'   : config['grid_id']}
             

    
    for name, entry in config['ncdump'].items():
        logger.debug("procesing entry %s " % name)
        
        if config.get('<files>'):
            files = config['<files>']
            if type(files)!=type([]):
                files = [files]
        else:
            tseries_files = expand(entry['tseries_file'], config)
            logger.debug("expanding file list from pattern and init time")
            
            files = glob.glob(tseries_files)
            logger.debug("found %d files" % len(files))

        dump(files, entry, scope, log_name=config['log.name'])
Exemplo n.º 6
0
def dump(files,entry,scope,log_name=LOGGER):
    
    logger = loghelper.get_logger(log_name)
    vars        = entry['tseries_vars']
    global_atts = entry['global_atts']
    var_atts    = entry['var_atts']
    coord_vars  = entry['coord_vars']
    format      = entry['format'].strip()
   
    #logger.warn("subsetting at read time is not implemented")
    # Read all data into memory as pandas Series objects
    logger.debug("ncdump called with arguments")
    logger.debug("\t files: %s"       % str(files))
    logger.debug("\t vars: %s"        % str(vars))
    logger.debug("\t global_atts: %s" % str(global_atts))
    logger.debug("\t var_atts: %s"    % str(var_atts))
    logger.debug("\t coord_vars: %s"  % str(coord_vars))
    logger.debug("\t log_name: %s"    % str(log_name))
    
    
    for file in files:
        logger.debug(file)
        frame = frame_from_nc([file], vars, global_atts, var_atts, coord_vars,log_name)
            
        if format not in FORMATS:
            logger.error("format %s not understood" % format)
            raise UnknownFormat("format not understood")
        
        if format=='txt' :
            pass
            #write_txt_files(frame, entry['dir'], entry['dimspec'], log_name)
            
        elif format=='json':
            write_json_files(frame, entry['dir'], expand(entry['fname'], scope), entry['tseries_vars'], entry['dimspec'], entry['drop'], entry['rename'], entry['float_format'], log_name)

        elif format=='csv':
            write_csv_files(frame, entry['dir'], expand(entry['fname'], scope), entry['tseries_vars'],entry['dimspec'], entry['drop'], values='value', rows=entry['rows'],cols=entry['cols'],sort_by=entry['sort_by'],rename=entry['rename'],float_format=entry['float_format'], na_rep=entry['na_rep'], log_name=log_name)
                
        elif format=='aot':
            write_aot_files(frame, entry['dir'])
Exemplo n.º 7
0
def power(config):
    """Reads 'time series' from netcdf time series file, and adds power as a variable. """
    
    if __name__ == "__main__":
        logger = loghelper.create_logger(config)
    else:
        logger = loghelper.get_logger(config['log.name'])
    
    # Number of samples to use should be in here
    # Whether to normalise power should be in here    
    pnorm           = config['pnorm']
    pdist           = config['pdist']
    sstd            = config['sstd']
    dstd            = config['dstd']
    pquants         = config['pquants']
    quantiles       = np.array(pquants)
    
    
    logger.debug(pnorm)
    
    if pdist:
        n=pdist
            
    grid_id         = config['grid_id']
    init_time       = config['init_time']
    pcurve_dir      = config['pcurve_dir']
    ts_dir          = config['tseries_dir']
    
    tseries_file    = expand(config['tseries_file'], config)
    power_file      = expand(config['power_file'], config)

    logger.info('Estimating power from time series: %s ' % tseries_file)
    logger.info('Writing power time series to: %s ' % power_file)
    
    dataset_in = Dataset(tseries_file, 'a')

            
        
    # Get dimensions
    dims    = dataset_in.dimensions
    ntime   = len(dims['time'])
    nloc    = len(dims['location'])
    nheight = len(dims['height'])
    loc_str_len = len(dims['loc_str_length'])
    
    # Get coordinate variables
    nctime    = dataset_in.variables['time']
    datetimes = netcdftime.num2date(nctime, nctime.units)
    location = [''.join(l.filled(' ')).strip() for l in dataset_in.variables['location']]
    height   = dataset_in.variables['height']

    # Get attributes
    metadata = config['metadata']

    
    if power_file == tseries_file:
        dataset_out = dataset_in
    else:
        dataset_out = Dataset(power_file, 'w')

        
    # Get number of quantiles
    nq    = len(quantiles)
    pdata = np.ma.zeros((ntime,nloc,nheight,nq+1), np.float) # mean will be 1st value
    
    use_locs = []
    for l,loc in enumerate(location):
    
        pcurve_file = '%s/%s.csv' %(pcurve_dir, loc)
        
        # mask power data if no power curve found for this park
        if not os.path.exists(pcurve_file):
            #logger.debug("Power curve: %s not found, skipping" % pcurve_file)
            pdata[:,l,:,:] = np.ma.masked
            continue
        
        logger.info('Predicting power output for %s' % loc )
        #
        # Open power curve
        #
        use_locs.append(l)
        pcurve = from_file(pcurve_file)

    
        for h in range(nheight):
            speed     = dataset_in.variables['SPEED'][:,l,h]
            direction = dataset_in.variables['DIRECTION'][:,l,h]
            
            #pwr = pcurve.power(speed,direction)
    
            # pdist will create a distribution for each timetep based on sampling
            # n times from a normal distribution. 
            pdist   = pcurve.power_dist(speed, direction, sstd=sstd,dstd=dstd,n=n, normalise=pnorm)
            pmean   = np.mean(pdist, axis=1)
            pquants = scipy.stats.mstats.mquantiles(pdist, prob=quantiles/100.0,axis=1, alphap=0.5, betap=0.5)
            

            pdata[:,l,h,0]  = pmean
            pdata[:,l,h,1:] = pquants[:,:]

        logger.info('finished %s' % loc)            



    use_inds = np.array(use_locs)
    logger.debug(use_inds)
    logger.debug(pdata.shape)
    logger.debug(pdata[:,use_inds,:,:].shape)

    if dataset_out != dataset_in:

        dataset_out.createDimension('time', None)
        dataset_out.createVariable('time', 'float', ('time',))
        dataset_out.variables['time'][:] = nctime[:]
        dataset_out.variables['time'].units = nctime.units
        dataset_out.variables['time'].calendar = nctime.calendar
        
        
        dataset_out.createDimension('location', len(use_locs))
        dataset_out.createDimension('loc_str_length', loc_str_len)
        
        loc_data =np.array([list(l.ljust(loc_str_len, ' ')) for l in location])
        dataset_out.createVariable('location', 'c', ('location', 'loc_str_length'))
        dataset_out.variables['location'][:] = loc_data[use_inds,:]
        
        dataset_out.createDimension('height', nheight)        
        dataset_out.createVariable('height', 'i', ('height',))
        dataset_out.variables['height'][:] = height[:]
        dataset_out.GRID_ID = dataset_in.GRID_ID
        dataset_out.DX = dataset_in.DX
        dataset_out.DY = dataset_in.DY
        
        try:
            dataset_out.variables['height'].units = height.units
        except Exception:
            logger.warn("height units missing")
        
        
        pdata = pdata[:, use_inds, :, :]
        for key in metadata.keys():
            key = key.upper()
            logger.debug(key)
            dataset_out.setncattr(key,dataset_in.getncattr(key))
            
        
    
    pavg    = dataset_out.createVariable('POWER','f',('time','location','height'))
    pavg.units = 'kW'
    pavg.description = 'forecast power output'
    pavg[:] = pdata[:,:,:,0]

    
    for q, qval in enumerate(quantiles):

        varname = 'POWER.P%02d' % qval
        logger.debug("creating variable %s" % varname)
        var  = dataset_out.createVariable(varname,'f',('time','location','height'))
        if pnorm:
            var.units = 'ratio'
        else:
            var.units = 'kW'
        var.description = 'forecast power output'
        print pdata[:,:,:,q+1]
        var[:] = pdata[:,:,:,q+1]
    
            

    
    dataset_in.close()
    if dataset_out!=dataset_in:
        dataset_out.close()
Exemplo n.º 8
0
def power(config):
    """Reads 'time series' from netcdf time series file, and adds power as a variable. """

    if __name__ == "__main__":
        logger = loghelper.create_logger(config)
    else:
        logger = loghelper.get_logger(config['log.name'])

    # Number of samples to use should be in here
    # Whether to normalise power should be in here
    pnorm = config['pnorm']
    pdist = config['pdist']
    sstd = config['sstd']
    dstd = config['dstd']
    pquants = config['pquants']
    quantiles = np.array(pquants)

    logger.debug(pnorm)

    if pdist:
        n = pdist

    grid_id = config['grid_id']
    init_time = config['init_time']
    pcurve_dir = config['pcurve_dir']
    ts_dir = config['tseries_dir']

    tseries_file = expand(config['tseries_file'], config)
    power_file = expand(config['power_file'], config)

    logger.info('Estimating power from time series: %s ' % tseries_file)
    logger.info('Writing power time series to: %s ' % power_file)

    dataset_in = Dataset(tseries_file, 'a')

    # Get dimensions
    dims = dataset_in.dimensions
    ntime = len(dims['time'])
    nloc = len(dims['location'])
    nheight = len(dims['height'])
    loc_str_len = len(dims['loc_str_length'])

    # Get coordinate variables
    nctime = dataset_in.variables['time']
    datetimes = netcdftime.num2date(nctime, nctime.units)
    location = [
        ''.join(l.filled(' ')).strip()
        for l in dataset_in.variables['location']
    ]
    height = dataset_in.variables['height']

    # Get attributes
    metadata = config['metadata']

    if power_file == tseries_file:
        dataset_out = dataset_in
    else:
        dataset_out = Dataset(power_file, 'w')

    # Get number of quantiles
    nq = len(quantiles)
    pdata = np.ma.zeros((ntime, nloc, nheight, nq + 1),
                        np.float)  # mean will be 1st value

    use_locs = []
    for l, loc in enumerate(location):

        pcurve_file = '%s/%s.csv' % (pcurve_dir, loc)

        # mask power data if no power curve found for this park
        if not os.path.exists(pcurve_file):
            #logger.debug("Power curve: %s not found, skipping" % pcurve_file)
            pdata[:, l, :, :] = np.ma.masked
            continue

        logger.info('Predicting power output for %s' % loc)
        #
        # Open power curve
        #
        use_locs.append(l)
        pcurve = from_file(pcurve_file)

        for h in range(nheight):
            speed = dataset_in.variables['SPEED'][:, l, h]
            direction = dataset_in.variables['DIRECTION'][:, l, h]

            #pwr = pcurve.power(speed,direction)

            # pdist will create a distribution for each timetep based on sampling
            # n times from a normal distribution.
            pdist = pcurve.power_dist(speed,
                                      direction,
                                      sstd=sstd,
                                      dstd=dstd,
                                      n=n,
                                      normalise=pnorm)
            pmean = np.mean(pdist, axis=1)
            pquants = scipy.stats.mstats.mquantiles(pdist,
                                                    prob=quantiles / 100.0,
                                                    axis=1,
                                                    alphap=0.5,
                                                    betap=0.5)

            pdata[:, l, h, 0] = pmean
            pdata[:, l, h, 1:] = pquants[:, :]

        logger.info('finished %s' % loc)

    use_inds = np.array(use_locs)
    logger.debug(use_inds)
    logger.debug(pdata.shape)
    logger.debug(pdata[:, use_inds, :, :].shape)

    if dataset_out != dataset_in:

        dataset_out.createDimension('time', None)
        dataset_out.createVariable('time', 'float', ('time', ))
        dataset_out.variables['time'][:] = nctime[:]
        dataset_out.variables['time'].units = nctime.units
        dataset_out.variables['time'].calendar = nctime.calendar

        dataset_out.createDimension('location', len(use_locs))
        dataset_out.createDimension('loc_str_length', loc_str_len)

        loc_data = np.array(
            [list(l.ljust(loc_str_len, ' ')) for l in location])
        dataset_out.createVariable('location', 'c',
                                   ('location', 'loc_str_length'))
        dataset_out.variables['location'][:] = loc_data[use_inds, :]

        dataset_out.createDimension('height', nheight)
        dataset_out.createVariable('height', 'i', ('height', ))
        dataset_out.variables['height'][:] = height[:]
        dataset_out.GRID_ID = dataset_in.GRID_ID
        dataset_out.DX = dataset_in.DX
        dataset_out.DY = dataset_in.DY

        try:
            dataset_out.variables['height'].units = height.units
        except Exception:
            logger.warn("height units missing")

        pdata = pdata[:, use_inds, :, :]
        for key in metadata.keys():
            key = key.upper()
            logger.debug(key)
            dataset_out.setncattr(key, dataset_in.getncattr(key))

    pavg = dataset_out.createVariable('POWER', 'f',
                                      ('time', 'location', 'height'))
    pavg.units = 'kW'
    pavg.description = 'forecast power output'
    pavg[:] = pdata[:, :, :, 0]

    for q, qval in enumerate(quantiles):

        varname = 'POWER.P%02d' % qval
        logger.debug("creating variable %s" % varname)
        var = dataset_out.createVariable(varname, 'f',
                                         ('time', 'location', 'height'))
        if pnorm:
            var.units = 'ratio'
        else:
            var.units = 'kW'
        var.description = 'forecast power output'
        print pdata[:, :, :, q + 1]
        var[:] = pdata[:, :, :, q + 1]

    dataset_in.close()
    if dataset_out != dataset_in:
        dataset_out.close()