Exemplo n.º 1
0
 def __init__(self, datafile):
     test_data = pickle.load(datafile)
     self.desired_dofnos = test_data['dofnos']
     self.desired_rhs_contribs = test_data['rhs_contribs']
     self.discretisation_order = test_data['order']
     self.mesh = get_centred_cube(
         test_data['domain_size'], test_data['max_edge_len'])
     self.discretisation_space = dolfin.FunctionSpace(
         self.mesh, "Nedelec 1st kind H(curl)", self.discretisation_order)
     self.no_integration_points = test_data['no_integration_points']
     self.I = test_data['I']
     self.source_endpoints = test_data['source_endpoints']
Exemplo n.º 2
0
 def __init__(self, datafile):
     test_data = pickle.load(datafile)
     ff_result_data = test_data['ff_result_data']
     nf_input_data = test_data['nf_input_data']
     self.desired_E_ff = ff_result_data['E_ff']
     self.desired_E_theta = self.desired_E_ff[:,0]
     self.desired_E_phi = self.desired_E_ff[:,1]
     self.theta_coords = ff_result_data['theta_deg']
     self.phi_coords = ff_result_data['phi_deg']
     self.discretisation_order = nf_input_data['order']
     self.mesh = get_centred_cube(
         nf_input_data['domain_size'], nf_input_data['max_edge_len'])
     self.discretisation_space = dolfin.FunctionSpace(
         self.mesh, "Nedelec 1st kind H(curl)", self.discretisation_order)
     self.discretisation_dofs = nf_input_data['x']
     self.frequency = nf_input_data['freq']
Exemplo n.º 3
0
 def __init__(self):
     ### Problem parameters
     self.freq =  1.0e+9                          # Frequency
     self.lam = c0/self.freq
     self.l = self.lam/10                            # Dipole length
     self.I = 1.0                                 # Dipole current
     self.source_direction = np.array([0,0,1.])    # Source orientation
     self.source_centre = np.array([0,0,0.])        # Position of the source
     self.source_endpoints =  np.array(
         [-self.source_direction*self.l/2, self.source_direction*self.l/2]) \
         + self.source_centre
     ### Discretisation settings
     self.order = 2
     self.domain_size = np.array([self.lam]*3)*0.5
     self.max_edge_len = self.lam/6
     self.mesh = get_centred_cube(self.domain_size, self.max_edge_len)
     ## Set up materials function with all free-space
     material_mesh_func = dolfin.MeshFunction('uint', self.mesh, 3)
     material_mesh_func.set_all(0)
     materials = {0:dict(eps_r=1, mu_r=1),}
     ## Set up 1st-order analytical ABC
     abc = sucemfem.BoundaryConditions.ABC.ABCBoundaryCondition()
     abc.set_region_number(1)
     bcs = sucemfem.BoundaryConditions.container.BoundaryConditions()
     bcs.add_boundary_condition(abc)
     ## Set up high level problem class
     dp = sucemfem.ProblemConfigurations.EMDrivenProblem.DrivenProblemABC()
     dp.set_mesh(self.mesh)
     dp.set_basis_order(self.order)
     dp.set_material_regions(materials)
     dp.set_region_meshfunction(material_mesh_func)
     dp.set_boundary_conditions(bcs)
     ## Set up current fillament source
     current_sources = sucemfem.Sources.current_source.CurrentSources()
     fillament_source = sucemfem.Sources.fillament_current_source.FillamentCurrentSource()
     fillament_source.set_source_endpoints(self.source_endpoints)
     fillament_source.set_value(self.I)
     current_sources.add_source(fillament_source)
     ## Set source in problem container
     dp.set_sources(current_sources)
     self.problem = dp
     self.function_space = dp.function_space
Exemplo n.º 4
0
    def test_ff_error(self):
        sucemfem.Utilities.Optimization.set_dolfin_optimisation(True)
        ### Postprocessing requests
        theta_deg = N.linspace(10, 170, 161)
        no_ff_pts = len(theta_deg)
        phi_deg = N.zeros(no_ff_pts)
        ### Problem parameters
        freq =  1.0e+9                          # Frequency
        lam = c0/freq
        l = lam/4                               # Dipole length
        I = 1.0                                 # Dipole current
        source_direction_z = N.array([0,0,1.])    # Source orientation
        source_direction_x = N.array([1.,0,0])    # Source orientation
        source_direction_y = N.array([0,1,0.])    # Source orientation
        source_centre = N.array([0,0,0.])        # Position of the source
        source_endpoints_z =  N.array(
            [-source_direction_z*l/2, source_direction_z*l/2]) + source_centre
        source_endpoints_x =  N.array(
            [-source_direction_x*l/2, source_direction_x*l/2]) + source_centre
        source_endpoints_y =  N.array(
            [-source_direction_y*l/2, source_direction_y*l/2]) + source_centre

        ### Discretisation settings
        order = 2
        domain_size = N.array([lam]*3)*1
        max_edge_len = lam/6
        mesh = get_centred_cube(domain_size, max_edge_len)

        ### Implementation
        #
        ## Set up materials function with all free-space
        material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
        material_mesh_func.set_all(0)
        materials = {0:dict(eps_r=1, mu_r=1),}
        ## Set up 1st-order analytical ABC
        abc = ABCBoundaryCondition()
        abc.set_region_number(1)
        bcs = BoundaryConditions()
        bcs.add_boundary_condition(abc)
        ## Set up high level problem class
        dp = DrivenProblemABC()
        dp.set_mesh(mesh)
        dp.set_basis_order(order)
        dp.set_material_regions(materials)
        dp.set_region_meshfunction(material_mesh_func)
        dp.set_boundary_conditions(bcs)
        ## Set up current fillament source
        current_sources = sucemfem.Sources.current_source.CurrentSources()
        fillament_source = FillamentCurrentSource()
        fillament_source.no_integration_points = 1000
        fillament_source.set_source_endpoints(source_endpoints_z)
        fillament_source.set_value(I)
        current_sources.add_source(fillament_source)
        ## Set source in problem container
        dp.set_sources(current_sources)
        dp.init_problem()
        dp.set_frequency(freq)

        ## Get sytem LHS matrix and RHS Vector
        A = dp.get_LHS_matrix()
        b_z = dp.get_RHS()
        fillament_source.set_source_endpoints(source_endpoints_x)
        b_x = dp.get_RHS()
        fillament_source.set_source_endpoints(source_endpoints_y)
        b_y = dp.get_RHS()

        #import pdb ; pdb.set_trace()
        A
        print 'solve using UMFPack'
        umf_solver = sucemfem.Utilities.LinalgSolvers.UMFPACKSolver(A)
        x_z = umf_solver.solve(b_z)
        x_x = umf_solver.solve(b_x)
        x_y = umf_solver.solve(b_y)

        ## Post-process solution to obtain far-field
        print 'calculating far field'
        surf_ntff = surface_ntff.NTFF(dp.function_space)
        surf_ntff.set_dofs(x_z)
        surf_ntff.set_frequency(freq)
        surf_E_ff_z = N.array([surf_ntff.calc_pt(th_deg, ph_deg)
                        for th_deg, ph_deg in zip(theta_deg, phi_deg)])
        surf_E_theta_z = surf_E_ff_z[:,0]
        surf_E_phi_z = surf_E_ff_z[:,1]
        surf_ntff.set_dofs(x_x)
        surf_E_ff_x = N.array([surf_ntff.calc_pt(th_deg+90, ph_deg)
                        for th_deg, ph_deg in zip(theta_deg, phi_deg)])
        surf_E_theta_x = surf_E_ff_x[:,0]
        surf_E_phi_x = surf_E_ff_x[:,1]
        surf_ntff.set_dofs(x_y)
        surf_E_ff_y = N.array([surf_ntff.calc_pt(th_deg+90, ph_deg)
                        for th_deg, ph_deg in zip(theta_deg, phi_deg)])
        surf_E_theta_y = surf_E_ff_y[:,0]
        surf_E_phi_y = surf_E_ff_y[:,1]

        ## Calculate some errors relative to the analytical solution
        an_E_theta = [current_fillament_farfield.eval_E_theta(freq, l, I, th)
                      for th in N.deg2rad(theta_deg)]
        err_z = normalised_RMS(
            surf_E_theta_z, an_E_theta, surf_E_phi_z)
        err_theta_z = normalised_RMS(surf_E_theta_z, an_E_theta)
        err_abs_theta_z = normalised_RMS(N.abs(surf_E_theta_z),
                                       N.abs(an_E_theta))
        err_x = normalised_RMS(
            surf_E_theta_x, an_E_theta, surf_E_phi_x)
        err_theta_x = normalised_RMS(surf_E_theta_x, an_E_theta)
        err_abs_theta_x = normalised_RMS(N.abs(surf_E_theta_x),
                                       N.abs(an_E_theta))
        err_y = normalised_RMS(
            surf_E_theta_y, an_E_theta, surf_E_phi_y)
        err_theta_y = normalised_RMS(surf_E_theta_y, an_E_theta)
        err_abs_theta_y = normalised_RMS(N.abs(surf_E_theta_y),
                                       N.abs(an_E_theta))
        print 'Far-field RMS error: ', err_z, err_x, err_y
        # Expected error for lam/6 mesh, 2nd order discretisation,
        # lam/4 current fillament source is ~4.685%
        self.assertTrue(err_z < 4.7)      
        self.assertTrue(err_x < 4.7)      
        self.assertTrue(err_z < 4.7)      
Exemplo n.º 5
0
    def test_ff_error(self):
        sucemfem.Utilities.Optimization.set_dolfin_optimisation(True)
        ### Postprocessing requests
        theta_deg = N.linspace(10, 170, 161)
        no_ff_pts = len(theta_deg)
        phi_deg = N.zeros(no_ff_pts)
        ### Problem parameters
        freq = 1.0e+9  # Frequency
        lam = c0 / freq
        l = lam / 4  # Dipole length
        I = 1.0  # Dipole current
        source_direction_z = N.array([0, 0, 1.])  # Source orientation
        source_direction_x = N.array([1., 0, 0])  # Source orientation
        source_direction_y = N.array([0, 1, 0.])  # Source orientation
        source_centre = N.array([0, 0, 0.])  # Position of the source
        source_endpoints_z = N.array([
            -source_direction_z * l / 2, source_direction_z * l / 2
        ]) + source_centre
        source_endpoints_x = N.array([
            -source_direction_x * l / 2, source_direction_x * l / 2
        ]) + source_centre
        source_endpoints_y = N.array([
            -source_direction_y * l / 2, source_direction_y * l / 2
        ]) + source_centre

        ### Discretisation settings
        order = 2
        domain_size = N.array([lam] * 3) * 1
        max_edge_len = lam / 6
        mesh = get_centred_cube(domain_size, max_edge_len)

        ### Implementation
        #
        ## Set up materials function with all free-space
        material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
        material_mesh_func.set_all(0)
        materials = {
            0: dict(eps_r=1, mu_r=1),
        }
        ## Set up 1st-order analytical ABC
        abc = ABCBoundaryCondition()
        abc.set_region_number(1)
        bcs = BoundaryConditions()
        bcs.add_boundary_condition(abc)
        ## Set up high level problem class
        dp = DrivenProblemABC()
        dp.set_mesh(mesh)
        dp.set_basis_order(order)
        dp.set_material_regions(materials)
        dp.set_region_meshfunction(material_mesh_func)
        dp.set_boundary_conditions(bcs)
        ## Set up current fillament source
        current_sources = sucemfem.Sources.current_source.CurrentSources()
        fillament_source = FillamentCurrentSource()
        fillament_source.no_integration_points = 1000
        fillament_source.set_source_endpoints(source_endpoints_z)
        fillament_source.set_value(I)
        current_sources.add_source(fillament_source)
        ## Set source in problem container
        dp.set_sources(current_sources)
        dp.init_problem()
        dp.set_frequency(freq)

        ## Get sytem LHS matrix and RHS Vector
        A = dp.get_LHS_matrix()
        b_z = dp.get_RHS()
        fillament_source.set_source_endpoints(source_endpoints_x)
        b_x = dp.get_RHS()
        fillament_source.set_source_endpoints(source_endpoints_y)
        b_y = dp.get_RHS()

        #import pdb ; pdb.set_trace()
        A
        print 'solve using UMFPack'
        umf_solver = sucemfem.Utilities.LinalgSolvers.UMFPACKSolver(A)
        x_z = umf_solver.solve(b_z)
        x_x = umf_solver.solve(b_x)
        x_y = umf_solver.solve(b_y)

        ## Post-process solution to obtain far-field
        print 'calculating far field'
        surf_ntff = surface_ntff.NTFF(dp.function_space)
        surf_ntff.set_dofs(x_z)
        surf_ntff.set_frequency(freq)
        surf_E_ff_z = N.array([
            surf_ntff.calc_pt(th_deg, ph_deg)
            for th_deg, ph_deg in zip(theta_deg, phi_deg)
        ])
        surf_E_theta_z = surf_E_ff_z[:, 0]
        surf_E_phi_z = surf_E_ff_z[:, 1]
        surf_ntff.set_dofs(x_x)
        surf_E_ff_x = N.array([
            surf_ntff.calc_pt(th_deg + 90, ph_deg)
            for th_deg, ph_deg in zip(theta_deg, phi_deg)
        ])
        surf_E_theta_x = surf_E_ff_x[:, 0]
        surf_E_phi_x = surf_E_ff_x[:, 1]
        surf_ntff.set_dofs(x_y)
        surf_E_ff_y = N.array([
            surf_ntff.calc_pt(th_deg + 90, ph_deg)
            for th_deg, ph_deg in zip(theta_deg, phi_deg)
        ])
        surf_E_theta_y = surf_E_ff_y[:, 0]
        surf_E_phi_y = surf_E_ff_y[:, 1]

        ## Calculate some errors relative to the analytical solution
        an_E_theta = [
            current_fillament_farfield.eval_E_theta(freq, l, I, th)
            for th in N.deg2rad(theta_deg)
        ]
        err_z = normalised_RMS(surf_E_theta_z, an_E_theta, surf_E_phi_z)
        err_theta_z = normalised_RMS(surf_E_theta_z, an_E_theta)
        err_abs_theta_z = normalised_RMS(N.abs(surf_E_theta_z),
                                         N.abs(an_E_theta))
        err_x = normalised_RMS(surf_E_theta_x, an_E_theta, surf_E_phi_x)
        err_theta_x = normalised_RMS(surf_E_theta_x, an_E_theta)
        err_abs_theta_x = normalised_RMS(N.abs(surf_E_theta_x),
                                         N.abs(an_E_theta))
        err_y = normalised_RMS(surf_E_theta_y, an_E_theta, surf_E_phi_y)
        err_theta_y = normalised_RMS(surf_E_theta_y, an_E_theta)
        err_abs_theta_y = normalised_RMS(N.abs(surf_E_theta_y),
                                         N.abs(an_E_theta))
        print 'Far-field RMS error: ', err_z, err_x, err_y
        # Expected error for lam/6 mesh, 2nd order discretisation,
        # lam/4 current fillament source is ~4.685%
        self.assertTrue(err_z < 4.7)
        self.assertTrue(err_x < 4.7)
        self.assertTrue(err_z < 4.7)
Exemplo n.º 6
0
from sucemfem.PostProcessing import surface_ntff, variational_ntff

# Enable dolfin's form optimizations
sucemfem.Utilities.Optimization.set_dolfin_optimisation()

# Near-field of an infintesimal dipole
fname = 'reference_dofs-2-0.149896229-0.0499654096667.pickle'
theta_deg = N.linspace(0, 180, 181)
no_ff_pts = len(theta_deg)
phi_deg = N.zeros(no_ff_pts)
data = pickle.load(open(fname))
print data

lam = c0/data['freq']
k0 = data['freq']*2*N.pi/c0
mesh = get_centred_cube(data['domain_size'], data['max_edge_len'])
#plot(mesh,interactive=True)
V = dolfin.FunctionSpace(mesh, "Nedelec 1st kind H(curl)", data['order'])

#------------------------------
# Calculate using the standard surface integral NTFF
surf_ntff = surface_ntff.NTFF(V)
surf_ntff.set_dofs(data['x'])
surf_ntff.set_frequency(data['freq'])
surf_E_ff = N.array([surf_ntff.calc_pt(th_deg, ph_deg)
                for th_deg, ph_deg in zip(theta_deg, phi_deg)])
surf_E_theta = surf_E_ff[:,0]
surf_E_phi = surf_E_ff[:,1]
#------------------------------
# Calculate using the variational integral NTFF
var_ntff = variational_ntff.NTFF(V)
Exemplo n.º 7
0
import pickle
sys.path.append('../../../')


## Problem parameters
freq = 1e9
lam = c0/freq
I = 1.                                 # Dipole current
l = lam/1000                            # Dipole length
source_value = N.array([0,0,1.])*I*l
source_coord = N.array([0,0,0.]) 
## Discretisation settings
order = 2
domain_size = N.array([lam]*3)*0.5
max_edge_len = lam/6
mesh = get_centred_cube(domain_size, max_edge_len, source_coord)
# Request information:
field_pts = N.array(
    [N.max(domain_size)/2-max_edge_len/2,0,0]
    )*(N.arange(88)/100+1/10)[:, N.newaxis]

## Implementation
material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
material_mesh_func.set_all(0)
materials = {0:dict(eps_r=1, mu_r=1),}
abc = ABCBoundaryCondition()
abc.set_region_number(1)
bcs = sucemfem.BoundaryConditions.container.BoundaryConditions()
bcs.add_boundary_condition(abc)
dp = DrivenProblemABC()
dp.set_mesh(mesh)
Exemplo n.º 8
0
### Problem parameters
freq = 1.0e+9  # Frequency
lam = c0 / freq
l = lam / 10  # Dipole length
I = 1.0  # Dipole current
source_direction = N.array([0, 0, 1.])  # Source orientation
source_centre = N.array([0, 0, 0.])  # Position of the source
source_endpoints = N.array(
    [-source_direction * l / 2, source_direction * l / 2]) + source_centre

### Discretisation settings
order = 2
domain_size = N.array([lam] * 3) * 0.25
max_edge_len = lam / 6
mesh = get_centred_cube(domain_size, max_edge_len)

fname = 'power_flux_reference_dofs_f-%f_o-%d_s-%f_l-%f_h-%f' % (
    freq, order, domain_size[0], l / lam, max_edge_len / lam)
meshfilename = fname + '_mesh.xml'
materialsfilename = fname + '_materials.xml'
print fname
### Implementation
#
## Set up materials function with all free-space
material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
material_mesh_func.set_all(0)
materials = {
    0: dict(eps_r=1, mu_r=1),
}
## Set up 1st-order analytical ABC
Exemplo n.º 9
0
from pylab import *
from blog_example import analytical_pts, analytical_result

## Problem parameters
I = problem_data['I']  # Dipole current
l = problem_data['l']  # Dipole length
source_value = N.array([0, 0, 1.]) * I * l
freq = problem_data['f']
lam = c0 / freq
source_coord = N.array([0, 0, 0.])
## Discretisation settings
order = 1
domain_size = N.array([2 * lam] * 3)
max_edge_len = lam / 6
mesh = get_centred_cube(domain_size, max_edge_len, source_coord)
# Request information:
field_pts = N.array([lam, 0, 0]) * (N.arange(88) / 100 + 1 / 10)[:, N.newaxis]

## Implementation
material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
material_mesh_func.set_all(0)
materials = {
    0: dict(eps_r=1, mu_r=1),
}
abc = ABCBoundaryCondition()
abc.set_region_number(1)
bcs = BoundaryConditions()
bcs.add_boundary_condition(abc)
dp = DrivenProblemABC()
dp.set_mesh(mesh)
Exemplo n.º 10
0
### Problem parameters
freq =  1.0e+9                          # Frequency
lam = c0/freq
l = lam/4                               # Dipole length
I = 1.0                                 # Dipole current
source_direction = N.array([0,0,1.])    # Source orientation
source_centre = N.array([0,0,0.])        # Position of the source
source_endpoints =  N.array(
    [-source_direction*l/2, source_direction*l/2]) + source_centre

### Discretisation settings
order = 2
domain_size = N.array([lam]*3)*1
max_edge_len = lam/6
mesh = get_centred_cube(domain_size, max_edge_len)

### Implementation
#
## Set up materials function with all free-space
material_mesh_func = dolfin.MeshFunction('uint', mesh, 3)
material_mesh_func.set_all(0)
materials = {0:dict(eps_r=1, mu_r=1),}
## Set up 1st-order analytical ABC
abc = ABCBoundaryCondition()
abc.set_region_number(1)
bcs = BoundaryConditions()
bcs.add_boundary_condition(abc)
## Set up high level problem class
dp = DrivenProblemABC()
dp.set_mesh(mesh)