def sg_optim(loss, **kwargs): r"""Applies gradients to variables. Args: loss: A 0-D `Tensor` containing the value to minimize. list of 0-D tensor for Multiple GPU kwargs: optim: A name for optimizer. 'MaxProp' (default), 'AdaMax', 'Adam', 'RMSProp' or 'sgd'. lr: A Python Scalar (optional). Learning rate. Default is .001. beta1: A Python Scalar (optional). Default is .9. beta2: A Python Scalar (optional). Default is .99. momentum : A Python Scalar for RMSProp optimizer (optional). Default is 0. category: A string or string list. Specifies the variables that should be trained (optional). Only if the name of a trainable variable starts with `category`, it's value is updated. Default is '', which means all trainable variables are updated. """ opt = tf.sg_opt(kwargs) # default training options opt += tf.sg_opt(optim='MaxProp', lr=0.001, beta1=0.9, beta2=0.99, momentum=0., category='') # select optimizer if opt.optim == 'MaxProp': optim = tf.sg_optimize.MaxPropOptimizer(learning_rate=opt.lr, beta2=opt.beta2) elif opt.optim == 'AdaMax': optim = tf.sg_optimize.AdaMaxOptimizer(learning_rate=opt.lr, beta1=opt.beta1, beta2=opt.beta2) elif opt.optim == 'Adam': optim = tf.train.AdamOptimizer(learning_rate=opt.lr, beta1=opt.beta1, beta2=opt.beta2) elif opt.optim == 'RMSProp': optim = tf.train.RMSPropOptimizer(learning_rate=opt.lr, decay=opt.beta1, momentum=opt.momentum) else: optim = tf.train.GradientDescentOptimizer(learning_rate=opt.lr) # get trainable variables if isinstance(opt.category, (tuple, list)): var_list = [] for cat in opt.category: var_list.extend([t for t in tf.trainable_variables() if t.name.startswith(cat)]) else: var_list = [t for t in tf.trainable_variables() if t.name.startswith(opt.category)] # # calc gradient # # multiple GPUs case if isinstance(loss, (tuple, list)): gradients = [] # loop for each GPU tower for i, loss_ in enumerate(loss): # specify device with tf.device('/gpu:%d' % i): # give new scope only to operation with tf.name_scope('gpu_%d' % i): # add gradient calculation operation for each GPU tower gradients.append(tf.gradients(loss_, var_list)) # averaging gradient gradient = [] for grad in zip(*gradients): gradient.append(tf.add_n(grad) / len(loss)) # single GPU case else: gradient = tf.gradients(loss, var_list) gradient, _ = tf.clip_by_global_norm(gradient, opt.clip_grad_norm) # gradient update op with tf.device('/gpu:0'): grad_var = [(g, v) for g, v in zip(gradient, var_list)] grad_op = optim.apply_gradients(grad_var, global_step=tf.sg_global_step()) # add summary using last tower value for g, v in grad_var: # exclude batch normal statics if 'mean' not in v.name and 'variance' not in v.name \ and 'beta' not in v.name and 'gamma' not in v.name: tf.sg_summary_gradient(v, g) # extra update ops within category ( for example, batch normal running stat update ) if isinstance(opt.category, (tuple, list)): update_op = [] for cat in opt.category: update_op.extend([t for t in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if t.name.startswith(cat)]) else: update_op = [t for t in tf.get_collection(tf.GraphKeys.UPDATE_OPS) if t.name.startswith(opt.category)] return tf.group(*([grad_op] + update_op))
def tower_loss2_old(xx, scope, reuse_vars=False): # make embedding matrix for source and target with tf.variable_scope('embs', reuse=reuse_vars): emb_x = tf.sg_emb(name='emb_x', voca_size=Hp.vs, dim=Hp.hd, dev=self._dev) emb_y = tf.sg_emb(name='emb_y', voca_size=Hp.vs, dim=Hp.hd, dev=self._dev) x_sents = tf.unstack(xx, axis=1) #each element is (batch, sentlen) # generate first an unconditioned sentence n_input = Hp.hd subrec1 = subrec_zero_state(Hp.bs, Hp.hd) subrec2 = subrec_zero_state(Hp.bs, Hp.hd) rnn_cell = LSTMCell(in_dim=n_input, dim=Hp.hd) (rnn_state, rnn_h) = rnn_cell.zero_state(Hp.bs) crnn_cell = ConvLSTMCell(in_dim=n_input, dim=Hp.hd) (crnn_state, crnn_h) = crnn_cell.zero_state(n_input) for sent in range(len(x_sents) - 1): y = x_sents[i + 1] x = x_sents[i] # (batch, sentlen) = (16, 200) # shift target by one step for training source y_src = tf.concat([tf.zeros((Hp.bs, 1), tf.sg_intx), y[:, :-1]], 1) # embed table lookup enc = x.sg_lookup(emb=emb_x) #(batch, sentlen, dim1) # loop dilated conv block for i in range(num_blocks): enc = (enc.sg_res_block( size=5, rate=1, name="enc1_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=2, name="enc2_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=4, name="enc4_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=8, name="enc8_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=16, name="enc16_%d" % (i), reuse_vars=reuse_vars)) #quasi rnn layer [batch * 3, t, dim2 ] conv = enc.sg_quasi_conv1d(is_enc=True, size=2, name="conv1", reuse_vars=reuse_vars) #attention layer # recurrent layer # 1 + final encoder hidden state concat = subrec1.sg_concat(target=conv, dim=0) subrec1 = conv.sg_quasi_rnn(is_enc=True, att=True) conv = pool.sg_quasi_conv1d(is_enc=True, size=2, name="conv2", reuse_vars=reuse_vars) concat = subrec2.sg_concat(target=conv, dim=0) subrec2 = conv.sg_quasi_rnn(is_enc=True, att=True) # conv LSTM (crnn_state, crnn_h) = crnn_cell(subrec2, (crnn_state, crnn_h), 5) # recurrent block (rnn_state, rnn_h) = rnn_cell(crnn_h, (rnn_state, rnn_h)) # CNN decoder dec = crnn_h.sg_concat(target=y_src.sg_lookup(emb=emb_y), name="dec") for i in range(num_blocks): dec = (dec.sg_res_block( size=3, rate=1, causal=True, name="dec1_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=2, causal=True, name="dec2_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=4, causal=True, name="dec4_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=8, causal=True, name="dec8_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=16, causal=True, name="dec16_%d" % (i), reuse_vars=reuse_vars)) # final fully convolution layer for softmax dec = dec.sg_conv1d_gpus(size=1, dim=Hp.vs,name="out",summary=False,\ dev = self._dev,reuse=reuse_vars) ce_array = dec.sg_ce(target=y, mask=True, name="cross_ent_example") cross_entropy_mean = tf.reduce_mean(ce_array, name='cross_entropy') tf.add_to_collection('losses', cross_entropy_mean) # Assemble all of the losses for the current tower only. losses = tf.get_collection('losses', scope) # Calculate the total loss for the current tower. total_loss = tf.add_n(losses, name='total_loss') return total_loss
size=1, act='tanh', bn=True, dim=20, dout=0.25).sg_conv1d( size=1, act='tanh', bn=True, dim=2, dout=0.25).sg_reshape(shape=(batch_size, 200)).sg_dense( in_dim=200, dim=50, act='relu', dout=0.20).sg_dense(in_dim=50, dim=10, act='relu', dout=0.20).sg_dense(in_dim=10, dim=2, dout=0.20)) # CTC loss #loss = logit.sg_ctc(target=y, seq_len=seq_len) reg_lambda = 0.0002 trainable = tf.trainable_variables() lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in trainable]) * reg_lambda loss = logit.sg_ce(target=y, one_hot=True) + lossL2 # train config = tf.ConfigProto(allow_soft_placement=True, inter_op_parallelism_threads=6, intra_op_parallelism_threads=6) sess = tf.Session(config=config) tf.sg_init(sess) learning_rate = tf.train.exponential_decay(0.00001, tf.sg_global_step(), 100, 0.95, staircase=False)
def rnn_body(time, subrec1, subrec2, rnn_state, rnn_h, crnn_state, crnn_h, losses): x = x_sent.read(time) y = x_sent.read(time + 1) # (batch, sentlen) = (16, 200) # shift target by one step for training source y_src = tf.concat([tf.zeros((Hp.batch_size, 1), tf.int32), y[:, :-1]], 1) reuse_vars = time == tf.constant(0) or reu_vars # -------------------------- BYTENET ENCODER -------------------------- # embed table lookup enc = x.sg_lookup(emb=emb_x) #(batch, sentlen, latentdim) # loop dilated conv block for i in range(num_blocks): enc = (enc.sg_res_block( size=5, rate=1, name="enc1_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=2, name="enc2_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=4, name="enc4_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=8, name="enc8_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=5, rate=16, name="enc16_%d" % (i), reuse_vars=reuse_vars)) # -------------------------- QCNN + QPOOL ENCODER with attention #1 -------------------------- #quasi cnn layer ZFO [batch * 3, t, dim2 ] conv = enc.sg_quasi_conv1d(is_enc=True, size=3, name="qconv_1", reuse_vars=reuse_vars) #attention layer # recurrent layer # 1 + final encoder hidden state subrec1 = tf.tile((subrec1.sg_expand_dims(axis=1)), [1, Hp.maxlen, 1]) concat = conv.sg_concat(target=subrec1, axis=0) # (batch*4, sentlen, latentdim) pool = concat.sg_quasi_rnn(is_enc=True, att=True, name="qrnn_1", reuse_vars=reuse_vars) subrec1 = pool[:Hp.batch_size, -1, :] # last character in sequence # -------------------------- QCNN + QPOOL ENCODER with attention #2 -------------------------- # quazi cnn ZFO (batch*3, sentlen, latentdim) conv = pool.sg_quasi_conv1d(is_enc=True, size=2, name="qconv_2", reuse_vars=reuse_vars) # (batch, sentlen-duplicated, latentdim) subrec2 = tf.tile((subrec2.sg_expand_dims(axis=1)), [1, Hp.maxlen, 1]) # (batch*4, sentlen, latentdim) concat = conv.sg_concat(target=subrec2, axis=0) pool = concat.sg_quasi_rnn(is_enc=True, att=True, name="qrnn_2", reuse_vars=reuse_vars) subrec2 = pool[:Hp.batch_size, -1, :] # last character in sequence # -------------------------- ConvLSTM with RESIDUAL connection and MULTIPLICATIVE block -------------------------- #residual block causal = False # for encoder crnn_input = (pool[:Hp.batch_size, :, :].sg_bypass_gpus( name='relu_0', act='relu', bn=(not causal), ln=causal).sg_conv1d_gpus(name="dimred_0", size=1, dev="/cpu:0", reuse=reuse_vars, dim=Hp.hd / 2, act='relu', bn=(not causal), ln=causal)) # conv LSTM with tf.variable_scope("mem/clstm") as scp: (crnn_state, crnn_h) = crnn_cell(crnn_input, (crnn_state, crnn_h), size=5, reuse_vars=reuse_vars) # dimension recover and residual connection rnn_input0 = pool[:Hp.batch_size,:,:] + crnn_h\ .sg_conv1d_gpus(name = "diminc_0",size=1,dev="/cpu:0", dim=Hp.hd,reuse=reuse_vars, act='relu', bn=(not causal), ln=causal) # -------------------------- QCNN + QPOOL ENCODER with attention #3 -------------------------- # pooling for lstm input # quazi cnn ZFO (batch*3, sentlen, latentdim) conv = rnn_input0.sg_quasi_conv1d(is_enc=True, size=2, name="qconv_3", reuse_vars=reuse_vars) pool = conv.sg_quasi_rnn(is_enc=True, att=False, name="qrnn_3", reuse_vars=reuse_vars) rnn_input = pool[:Hp.batch_size, -1, :] # last character in sequence # -------------------------- LSTM with RESIDUAL connection and MULTIPLICATIVE block -------------------------- # recurrent block with tf.variable_scope("mem/lstm") as scp: (rnn_state, rnn_h) = rnn_cell(rnn_input, (rnn_state, rnn_h)) rnn_h2 = tf.tile(((rnn_h + rnn_input).sg_expand_dims(axis=1)), [1, Hp.maxlen, 1]) # -------------------------- BYTENET DECODER -------------------------- # CNN decoder dec = y_src.sg_lookup(emb=emb_y).sg_concat(target=rnn_h2, name="dec") for i in range(num_blocks): dec = (dec.sg_res_block( size=3, rate=1, causal=True, name="dec1_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=2, causal=True, name="dec2_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=4, causal=True, name="dec4_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=8, causal=True, name="dec8_%d" % (i), reuse_vars=reuse_vars).sg_res_block( size=3, rate=16, causal=True, name="dec16_%d" % (i), reuse_vars=reuse_vars)) # final fully convolution layer for softmax dec = dec.sg_conv1d_gpus(size=1, dim=Hp.vs, name="out", summary=False, dev=self._dev, reuse=reuse_vars) ce_array = dec.sg_ce(target=y, mask=True, name="cross_ent_example") cross_entropy_mean = tf.reduce_mean(ce_array, name='cross_entropy') losses = tf.add_n([losses, cross_entropy_mean], name='total_loss') return (time + 1, subrec1, subrec2, rnn_state, rnn_h, crnn_state, crnn_h, losses)