def sg_log(tensor, opt): r"""Log transform a dense tensor See `tf.log()` in tensorflow. Args: tensor: A `Tensor` ( automatically given by chain ) opt: name: If provided, replace current tensor's name. Returns: A `Tensor`. """ return tf.log(tensor + tf.sg_eps, name=opt.name)
def ner_cost(tensor, opt): one_hot_labels = tf.one_hot(opt.target - 1, opt.num_classes, dtype=tf.float32) cross_entropy = one_hot_labels * tf.log(tensor) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) mask = tf.sign(tf.abs(opt.target)) cross_entropy *= tf.cast(mask, tf.float32) cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) length = tf.cast(tf.reduce_sum(tf.sign(opt.target), reduction_indices=1), tf.int32) cross_entropy /= tf.cast(length, tf.float32) out = tf.reduce_mean(cross_entropy, name='ner_cost') # add summary tf.sg_summary_loss(out, name=opt.name) return out
def ner_cost(tensor, opt): one_hot_labels = tf.one_hot(opt.target - 1, opt.num_classes, dtype=tf.float32) cross_entropy = one_hot_labels * tf.log(tensor) cross_entropy = -tf.reduce_sum(cross_entropy, reduction_indices=2) mask = tf.sign(tf.reduce_max(tf.abs(one_hot_labels), reduction_indices=2)) cross_entropy *= tf.cast(mask, tf.float32) cross_entropy = tf.reduce_sum(cross_entropy, reduction_indices=1) length = tf.cast(tf.reduce_sum(tf.sign(opt.target), reduction_indices=1), tf.int32) cross_entropy /= tf.cast(length, tf.float32) out = tf.reduce_mean(cross_entropy, name='ner_cost') # add summary tf.sg_summary_loss(out, name=opt.name) return out
tf.random_normal([n_hidden_units_two, n_hidden_units_three], mean=0, stddev=sd)) b_3 = tf.Variable(tf.random_normal([n_hidden_units_three], mean=0, stddev=sd)) h_3 = tf.nn.sigmoid(tf.matmul(h_2, W_3) + b_3) W = tf.Variable( tf.random_normal([n_hidden_units_three, num_classes], mean=0, stddev=sd)) b = tf.Variable(tf.random_normal([num_classes], mean=0, stddev=sd)) with tf.name_scope('out'): y_ = tf.nn.softmax(tf.matmul(h_3, W) + b, name="out") init = tf.global_variables_initializer() cost_function = tf.reduce_mean( -tf.reduce_sum(Y * tf.log(y_), reduction_indices=[1])) #optimizer = tf.train.RMSPropOptimizer(learning_rate,decay=0.9,momentum=0.9,centered=True).minimize(cost_function) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize( cost_function) correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) cost_history = np.empty(shape=[1], dtype=float) acc_history = np.empty(shape=[1], dtype=float) t_cost_history = np.empty(shape=[1], dtype=float) t_acc_history = np.empty(shape=[1], dtype=float) y_true, y_pred = None, None with tf.Session() as session: session.run(init)
def __init__(self, x, y, num_batch, vocab_size, emb_dim, hidden_dim, max_ep=240, infer_shape=(1, 1), mode="train"): self.num_batch = num_batch self.emb_dim = emb_dim self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.max_len_infer = 512 self.max_ep = max_ep # reuse = len([t for t in tf.global_variables() if t.name.startswith('gen')]) > 0 reuse = (mode == 'infer') if mode == "train": self.x = x self.y = y elif mode == "infer": self.x = tf.placeholder(tf.int32, shape=infer_shape) self.y = tf.placeholder(tf.int32, shape=infer_shape) with tf.variable_scope("gen_embs", reuse=reuse): self.emb_x = tf.get_variable("emb_x", [self.vocab_size, self.emb_dim]) self.emb_y = tf.get_variable("emb_y", [self.vocab_size, self.emb_dim]) self.X = tf.nn.embedding_lookup(self.emb_x, self.x) self.Y = tf.nn.embedding_lookup(self.emb_y, self.y) with tf.sg_context(name='gen', reuse=reuse): # self.emb_x = tf.Variable(tf.random_uniform([self.vocab_size, self.emb_dim], 0.0, 1.0), name="emb_x") # self.emb_y = tf.Variable(tf.random_uniform([self.vocab_size, self.emb_dim], 0.0, 1.0), name="emb_y") # self.emb_x = tf.sg_emb(name='emb_x', voca_size=self.vocab_size, dim=self.emb_dim) # (68,16) # self.emb_y = tf.sg_emb(name='emb_y', voca_size=self.vocab_size, dim=self.emb_dim) # (68,16) # self.X = self.x.sg_lookup(emb=self.emb_x) # (8,63,16) # self.Y = self.y.sg_lookup(emb=self.emb_y) # (8,63,16) if mode == "train": self.lstm_layer = self.X.sg_lstm(in_dim=self.emb_dim, dim=self.vocab_size, name="lstm") # (8, 63, 68) self.test = self.lstm_layer.sg_softmax(name="testtt") print "mazum??" print self.test elif mode == "infer": self.lstm_layer = self.X.sg_lstm(in_dim=self.emb_dim, dim=self.vocab_size, last_only=True, name="lstm") self.log_prob = tf.log(self.lstm_layer) # next_token: select by distribution probability, preds: select by argmax self.multinormed = tf.multinomial(self.log_prob, 1) self.next_token = tf.cast( tf.reshape(tf.multinomial(self.log_prob, 1), [1, infer_shape[0]]), tf.int32) self.preds = self.lstm_layer.sg_argmax() if mode == "train": self.loss = self.lstm_layer.sg_ce(target=self.y) self.istarget = tf.not_equal(self.y, 0).sg_float() self.reduced_loss = (self.loss.sg_sum()) / ( self.istarget.sg_sum() + 0.0000001) tf.sg_summary_loss(self.reduced_loss, "reduced_loss")