def window():
    global lastFilename
    name,ext=os.path.splitext(request.args.get('type'))
    filenamenew=name+ext
    lastFilename=filenamenew
    status=1
    
    if ext==".pdf":
        # creating a pdf file object 
        pdfFileObj = open(UPLOAD_FOLDER+"/"+filenamenew, 'rb')    
        # creating a pdf reader object 
        pdfReader = PyPDF2.PdfFileReader(pdfFileObj)      
        # printing number of pages in pdf file 
        print(pdfReader.numPages) 
        #print(pdfReader.getDocumentInfo())
        #print(pdfReader.getIsEncrypted())                
        # creating a page object 
        bundle=""
        for i in range(1,pdfReader.numPages):
            pageObj = pdfReader.getPage(i)
            # extracting text from page 
            #print(pageObj.extractText())
            bundle+=pageObj.extractText()      
        #print(bundle)
        # closing the pdf file object 
        pdfFileObj.close()
        
        #Auto tagging
        t = AutoTagify()
        t.text = bundle
        #print(t.tag_list())
        e_words = list(dict.fromkeys(t.tag_list()))  
        #print(e_words)

    else:
        file = open(UPLOAD_FOLDER+"/"+filenamenew,"r+") 
        #print(type(file.read()))

        t = AutoTagify()
        t.text = file.read()
        #print(len(t.tag_list()))
        e_words = list(dict.fromkeys(t.tag_list()))  
        #print(e_words)
        file.close() 
    
    #Summarization
    summary=generate_summary(UPLOAD_FOLDER+"/"+filenamenew,5)

    conn = sqlite3.connect('TAGS.db')
    #c = conn.cursor()
    # Insert a row of data
    conn.execute('''INSERT INTO Tag (Filename,Auto_tag,Manual_tag,Summary,status) VALUES (?,?,?,?,?)''',(filenamenew, str(e_words),str([]),str(summary),status))
            
    # Save (commit) the changes
    conn.commit()
    conn.close()
        
    return render_template('window.html',F=filenamenew,L=e_words)
Exemplo n.º 2
0
def getsummary():
    if request.method == "POST":
        topic = request.form['topic']
        text = request.form["text"]
        data = generate_summary(text)
        sd.add_data(text,topic,data)
        all_data = sd.get_all_records()
        return render_template("getchapsum.html",data= data,text=text,all_data = all_data)
    return render_template("getchapsum.html")
Exemplo n.º 3
0
def get_metadata(path):
    # Checks if Scanned PDF (Needs to be added)

    text = ""
    curr_page = 0
    with open(path, 'rb') as f:
        pdf = PdfFileReader(f)
        info = pdf.getDocumentInfo()
        number_of_pages = pdf.getNumPages()

    while curr_page < number_of_pages:
        page = pdf.getPage(curr_page)
        curr_page += 1
        text += page.extractText()

    metadata = {}
    metadata['author'] = info.author
    metadata['creator'] = info.creator
    metadata['producer'] = info.producer
    metadata['subject'] = info.subject
    metadata['title'] = info.title
    metadata['numpages'] = number_of_pages
    metadata['summary'] = generate_summary(text)
    return metadata
Exemplo n.º 4
0
Arquivo: ycas.py Projeto: felgari/ycas
def pipeline(progargs):
    """ Performs sequentially the steps of the pipeline that have been 
    requested.
    
    Args:
        progargs: Program arguments.    
        
    """
    
    # Magnitudes calculated.
    mag = None     
    
    stars, filters, header_fields = get_pipeline_parameters(progargs)
    
    # This step organizes the images in directories depending on the type of
    # image: bias, flat or data.
    if progargs.organization_requested or progargs.all_steps_requested:
        logging.info("* Step 1 * Organizing image files in directories.")
        orgfits.organize_files(progargs, stars, header_fields, filters)
        anything_done = True
    else:
        logging.info("* Step 1 * Skipping the organization of image files in directories. Not requested.")
    
    # This step reduces the data images applying the bias and flats.
    if progargs.reduction_requested or progargs.all_steps_requested:
        logging.info("* Step 2 * Reducing images.")
        reduction.reduce_images(progargs)
        anything_done = True
    else:
        logging.info("* Step 2 * Skipping the reduction of images. Not requested.")
        
    # This step find objects in the images. The result is a list of x,y and
    # AR,DEC coordinates.
    if progargs.astrometry_requested or progargs.all_steps_requested:
        logging.info("* Step 3 * Performing astrometry of the images.")
        astrometry.do_astrometry(progargs, stars, header_fields)
        anything_done = True
    else:
        logging.info("* Step 3 * Skipping astrometry. Not requested.")

    # This step calculates the photometry of the objects detected doing the
    # astrometry.
    if progargs.photometry_requested or progargs.all_steps_requested:
        logging.info("* Step 4 * Performing photometry of the stars.")
        photometry.calculate_photometry(progargs)
        anything_done = True
    else:
        logging.info("* Step 4 * Skipping photometry. Not requested.")
        
    # This step process the magnitudes calculated for each object and
    # generates a file that associate to each object all its measures.
    if progargs.magnitudes_requested or progargs.all_steps_requested:
        logging.info("* Step 5 * Calculating magnitudes of stars.")
        mag = magnitude.process_magnitudes(stars, progargs.target_dir,
                                           progargs.light_directory)
        anything_done = True
    else:
        logging.info("* Step 5 * Skipping the calculation of magnitudes of stars. Not requested.")
        
    # This step process the magnitudes calculated for each object and
    # generates a light curves.
    if progargs.light_curves_requested or progargs.all_steps_requested:
        logging.info("* Step 6 * Generating light curves.")
        curves.generate_curves(stars, progargs.target_dir)
        anything_done = True
    else:
        logging.info("* Step 6 * Skipping the generation of light curves. Not requested.")        
        
    # Generates a summary if requested and some task has been indicated.
    if anything_done and progargs.summary_requested:
        summary.generate_summary(progargs, stars, mag)
Exemplo n.º 5
0
import speech_recognition as sr
import summary as s

print('hi')
r = sr.Recognizer()
with sr.Microphone() as source:
    audio = r.listen(source)

print('hi')
try:
    command = r.recognize_google(audio)

    with open('gen.txt', 'w') as f:
        print(command, file=f)

except:
    print('Soryy')

s.generate_summary('gen.txt')
Exemplo n.º 6
0
def pipeline(progargs):
    """ Performs sequentially the steps of the pipeline that have been 
    requested.
    
    Args:
        progargs: Program arguments.    
        
    """

    # Magnitudes calculated.
    mag = None

    stars, filters, header_fields = get_pipeline_parameters(progargs)

    # This step organizes the images in directories depending on the type of
    # image: bias, flat or data.
    if progargs.organization_requested or progargs.all_steps_requested:
        logging.info("* Step 1 * Organizing image files in directories.")
        orgfits.organize_files(progargs, stars, header_fields, filters)
        anything_done = True
    else:
        logging.info(
            "* Step 1 * Skipping the organization of image files in directories. Not requested."
        )

    # This step reduces the data images applying the bias and flats.
    if progargs.reduction_requested or progargs.all_steps_requested:
        logging.info("* Step 2 * Reducing images.")
        reduction.reduce_images(progargs)
        anything_done = True
    else:
        logging.info(
            "* Step 2 * Skipping the reduction of images. Not requested.")

    # This step find objects in the images. The result is a list of x,y and
    # AR,DEC coordinates.
    if progargs.astrometry_requested or progargs.all_steps_requested:
        logging.info("* Step 3 * Performing astrometry of the images.")
        astrometry.do_astrometry(progargs, stars, header_fields)
        anything_done = True
    else:
        logging.info("* Step 3 * Skipping astrometry. Not requested.")

    # This step calculates the photometry of the objects detected doing the
    # astrometry.
    if progargs.photometry_requested or progargs.all_steps_requested:
        logging.info("* Step 4 * Performing photometry of the stars.")
        photometry.calculate_photometry(progargs)
        anything_done = True
    else:
        logging.info("* Step 4 * Skipping photometry. Not requested.")

    # This step process the magnitudes calculated for each object and
    # generates a file that associate to each object all its measures.
    if progargs.magnitudes_requested or progargs.all_steps_requested:
        logging.info("* Step 5 * Calculating magnitudes of stars.")
        mag = magnitude.process_magnitudes(stars, progargs.target_dir,
                                           progargs.light_directory)
        anything_done = True
    else:
        logging.info(
            "* Step 5 * Skipping the calculation of magnitudes of stars. Not requested."
        )

    # This step process the magnitudes calculated for each object and
    # generates a light curves.
    if progargs.light_curves_requested or progargs.all_steps_requested:
        logging.info("* Step 6 * Generating light curves.")
        curves.generate_curves(stars, progargs.target_dir)
        anything_done = True
    else:
        logging.info(
            "* Step 6 * Skipping the generation of light curves. Not requested."
        )

    # Generates a summary if requested and some task has been indicated.
    if anything_done and progargs.summary_requested:
        summary.generate_summary(progargs, stars, mag)