Exemplo n.º 1
0
def _build_organ_strat(params):
    organ_strat = Stratification(
        "organ", ["smear_positive", "smear_negative", "extra_pulmonary"],
        INFECTIOUS_COMPS)
    organ_strat.set_population_split(params["organ"]["props"])
    # Add infectiousness adjustments
    for comp in INFECTIOUS_COMPS:
        organ_strat.add_infectiousness_adjustments(
            comp, _adjust_all_multiply(params["organ"]["foi"]))

    organ_strat.add_flow_adjustments(
        "early_activation", _adjust_all_multiply(params["organ"]["props"]))
    organ_strat.add_flow_adjustments(
        "late_activation", _adjust_all_multiply(params["organ"]["props"]))
    organ_strat.add_flow_adjustments(
        "detection",
        _adjust_all_multiply(params["detection_rate_stratified"]["organ"]),
    )
    organ_strat.add_flow_adjustments(
        "self_recovery_infectious",
        _adjust_all_multiply(params["self_recovery_rate_stratified"]["organ"]),
    )
    organ_strat.add_flow_adjustments(
        "self_recovery_detected",
        _adjust_all_multiply(params["self_recovery_rate_stratified"]["organ"]),
    )
    return organ_strat
Exemplo n.º 2
0
def _get_test_model(timestep=1, times=[0, 150]):
    comps = ["S", "EE", "LE", "EA", "LA", "R"]
    infectious_comps = ["LE", "EA", "LA"]
    model = CompartmentalModel(
        times=times,
        compartments=comps,
        infectious_compartments=infectious_comps,
        timestep=timestep,
    )
    model.set_initial_population({"S": int(20e6), "LA": 100})

    # Add flows
    model.add_infection_frequency_flow(name="infection", contact_rate=0.03, source="S", dest="EE")
    model.add_sojourn_flow(name="infect_onset", sojourn_time=7, source="EE", dest="LE")
    model.add_sojourn_flow(name="incidence", sojourn_time=7, source="LE", dest="EA")
    model.add_sojourn_flow(name="progress", sojourn_time=7, source="EA", dest="LA")
    model.add_sojourn_flow(name="recovery", sojourn_time=7, source="LA", dest="R")
    model.add_death_flow(name="infect_death", death_rate=0.005, source="LA")
    model.add_transition_flow(name="warning_immunity", fractional_rate=0.01, source="R", dest="S")

    # Stratify by age
    age_strat = Stratification("age", AGE_STRATA, comps)
    age_strat.set_population_split(AGE_SPLIT_PROPORTIONS)
    age_strat.set_mixing_matrix(AGE_MIXING_MATRIX)
    age_strat.add_flow_adjustments(
        "infection", {s: Multiply(v) for s, v in AGE_SUSCEPTIBILITY.items()}
    )
    model.stratify_with(age_strat)

    # Stratify by clinical status
    clinical_strat = Stratification("clinical", CLINICAL_STRATA, infectious_comps)
    clinical_strat.add_infectiousness_adjustments("LE", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments("EA", {**ADJ_BASE, "non_sympt": Overwrite(0.25)})
    clinical_strat.add_infectiousness_adjustments(
        "LA",
        {
            **ADJ_BASE,
            "non_sympt": Overwrite(0.25),
            "sympt_isolate": Overwrite(0.2),
            "hospital": Overwrite(0.2),
            "icu": Overwrite(0.2),
        },
    )
    clinical_strat.add_flow_adjustments(
        "infect_onset",
        {
            "non_sympt": Multiply(0.26),
            "icu": Multiply(0.01),
            "hospital": Multiply(0.04),
            "sympt_public": Multiply(0.66),
            "sympt_isolate": Multiply(0.03),
        },
    )
    model.stratify_with(clinical_strat)

    # Request derived outputs.
    model.request_output_for_flow(name="incidence", flow_name="incidence")
    model.request_output_for_flow(name="progress", flow_name="progress")
    for age in AGE_STRATA:
        for clinical in NOTIFICATION_STRATA:
            model.request_output_for_flow(
                name=f"progressXage_{age}Xclinical_{clinical}",
                flow_name="progress",
                dest_strata={"age": age, "clinical": clinical},
            )

    hospital_sources = []
    icu_sources = []
    for age in AGE_STRATA:
        icu_sources.append(f"progressXage_{age}Xclinical_icu")
        hospital_sources += [
            f"progressXage_{age}Xclinical_icu",
            f"progressXage_{age}Xclinical_hospital",
        ]

    model.request_aggregate_output(
        name="new_hospital_admissions",
        sources=hospital_sources,
    )
    model.request_aggregate_output(name="new_icu_admissions", sources=icu_sources)

    # Get notifications, which may included people detected in-country as they progress, or imported cases which are detected.
    notification_sources = [
        f"progressXage_{a}Xclinical_{c}" for a in AGE_STRATA for c in NOTIFICATION_STRATA
    ]
    model.request_aggregate_output(name="notifications", sources=notification_sources)

    # Infection deaths.
    model.request_output_for_flow(name="infection_deaths", flow_name="infect_death")
    model.request_cumulative_output(name="accum_deaths", source="infection_deaths")

    # Track hospital occupancy.
    # We count all ICU and hospital late active compartments and a proportion of early active ICU cases.
    model.request_output_for_compartments(
        "_late_active_hospital",
        compartments=["LA"],
        strata={"clinical": "hospital"},
        save_results=False,
    )
    model.request_output_for_compartments(
        "icu_occupancy",
        compartments=["LA"],
        strata={"clinical": "icu"},
    )
    model.request_output_for_compartments(
        "_early_active_icu",
        compartments=["EA"],
        strata={"clinical": "icu"},
        save_results=False,
    )
    proportion_icu_patients_in_hospital = 0.25
    model.request_function_output(
        name="_early_active_icu_proportion",
        func=lambda patients: patients * proportion_icu_patients_in_hospital,
        sources=["_early_active_icu"],
        save_results=False,
    )
    model.request_aggregate_output(
        name="hospital_occupancy",
        sources=[
            "_late_active_hospital",
            "icu_occupancy",
            "_early_active_icu_proportion",
        ],
    )

    # Proportion seropositive
    model.request_output_for_compartments(
        name="_total_population", compartments=comps, save_results=False
    )
    model.request_output_for_compartments(name="_recovered", compartments=["R"], save_results=False)
    model.request_function_output(
        name="proportion_seropositive",
        sources=["_recovered", "_total_population"],
        func=lambda recovered, total: recovered / total,
    )

    return model
Exemplo n.º 3
0
def get_clinical_strat(params: Parameters) -> Stratification:

    """
    Stratify the model by clinical status
    Stratify the infectious compartments of the covid model (not including the pre-symptomatic compartments, which are
    actually infectious)

    - notifications are derived from progress from early to late for some strata
    - the proportion of people moving from presympt to early infectious, conditioned on age group
    - rate of which people flow through these compartments (reciprocal of time, using within_* which is a rate of ppl / day)
    - infectiousness levels adjusted by early/late and for clinical strata
    - we start with an age stratified infection fatality rate
        - 50% of deaths for each age bracket die in ICU
        - the other deaths go to hospital, assume no-one else can die from COVID
        - should we ditch this?

    """
    clinical_strat = Stratification("clinical", CLINICAL_STRATA, INFECTIOUS_COMPARTMENTS)
    clinical_params = params.clinical_stratification
    country = params.country
    pop = params.population

    """
    Infectiousness adjustments for clinical stratification
    """
    # Add infectiousness reduction multiplier for all non-symptomatic infectious people.
    # These people are less infectious because of biology.
    non_sympt_adjust = Overwrite(clinical_params.non_sympt_infect_multiplier)
    clinical_strat.add_infectiousness_adjustments(
        Compartment.LATE_EXPOSED,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.SYMPT_ISOLATE: None,
            Clinical.HOSPITAL_NON_ICU: None,
            Clinical.ICU: None,
        },
    )
    clinical_strat.add_infectiousness_adjustments(
        Compartment.EARLY_ACTIVE,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.SYMPT_ISOLATE: None,
            Clinical.HOSPITAL_NON_ICU: None,
            Clinical.ICU: None,
        },
    )
    # Add infectiousness reduction for people who are late active and in isolation or hospital/icu.
    # These people are less infectious because of physical distancing/isolation/PPE precautions.
    late_infect_multiplier = clinical_params.late_infect_multiplier
    clinical_strat.add_infectiousness_adjustments(
        Compartment.LATE_ACTIVE,
        {
            Clinical.NON_SYMPT: non_sympt_adjust,
            Clinical.SYMPT_ISOLATE: Overwrite(late_infect_multiplier[Clinical.SYMPT_ISOLATE]),
            Clinical.SYMPT_NON_HOSPITAL: None,
            Clinical.HOSPITAL_NON_ICU: Overwrite(late_infect_multiplier[Clinical.HOSPITAL_NON_ICU]),
            Clinical.ICU: Overwrite(late_infect_multiplier[Clinical.ICU]),
        },
    )

    """
    Adjust infection death rates for hospital patients (ICU and non-ICU)
    """
    symptomatic_adjuster = params.clinical_stratification.props.symptomatic.multiplier
    hospital_adjuster = params.clinical_stratification.props.hospital.multiplier
    ifr_adjuster = params.infection_fatality.multiplier

    # Get all the adjustments in the same way as we will do if the immunity stratification is implemented
    entry_adjustments, death_adjs, progress_adjs, recovery_adjs, _, _ = get_all_adjs(
        clinical_params,
        country,
        pop,
        params.infection_fatality.props,
        params.sojourn,
        params.testing_to_detection,
        params.case_detection,
        ifr_adjuster,
        symptomatic_adjuster,
        hospital_adjuster,
    )

    # Assign all the adjustments to the model
    for agegroup in AGEGROUP_STRATA:
        source = {"agegroup": agegroup}
        clinical_strat.add_flow_adjustments(
            "infect_onset", entry_adjustments[agegroup], source_strata=source
        )
        clinical_strat.add_flow_adjustments(
            "infect_death", death_adjs[agegroup], source_strata=source
        )
        clinical_strat.add_flow_adjustments(
            "progress",
            progress_adjs,
            source_strata=source,
        )
        clinical_strat.add_flow_adjustments(
            "recovery",
            recovery_adjs[agegroup],
            source_strata=source,
        )

    return clinical_strat
Exemplo n.º 4
0
def test_create_stratification__with_infectiousness_adjustments():
    strat = Stratification(name="location",
                           strata=["rural", "urban"],
                           compartments=["S", "I", "R"])
    assert strat.infectiousness_adjustments == {}

    # Fail coz not all strata specified
    with pytest.raises(AssertionError):
        strat.add_infectiousness_adjustments(
            compartment_name="S",
            adjustments={"rural": Multiply(1.2)},
        )

    # Fail coz an incorrect strata specified
    with pytest.raises(AssertionError):
        strat.add_infectiousness_adjustments(
            compartment_name="S",
            adjustments={
                "rural": Multiply(1.2),
                "urban": Multiply(0.8),
                "alpine": Multiply(1.1),
            },
        )

    # Fail coz a time-varying function was used (not allowed!)
    with pytest.raises(AssertionError):
        strat.add_infectiousness_adjustments(
            compartment_name="S",
            adjustments={
                "rural": Multiply(1.2),
                "urban": Multiply(lambda t: 2),
            },
        )

    strat.add_infectiousness_adjustments(
        compartment_name="S",
        adjustments={
            "rural": Multiply(1.2),
            "urban": Multiply(2),
        },
    )

    assert strat.infectiousness_adjustments["S"]["rural"]._is_equal(
        Multiply(1.2))
    assert strat.infectiousness_adjustments["S"]["urban"]._is_equal(
        Multiply(2))

    # Fail coz we just did this
    with pytest.raises(AssertionError):
        strat.add_infectiousness_adjustments(
            compartment_name="S",
            adjustments={
                "rural": Multiply(1.2),
                "urban": Multiply(2),
            },
        )

    strat.add_infectiousness_adjustments(
        compartment_name="I",
        adjustments={
            "rural": Multiply(1.2),
            "urban": None,
        },
    )

    assert strat.infectiousness_adjustments["I"]["rural"]._is_equal(
        Multiply(1.2))
    assert strat.infectiousness_adjustments["I"]["urban"] is None
def test_strat_infectiousness__with_adjustments():
    """
    Ensure multiply infectiousness adjustment is applied.
    """
    # Create a model
    model = CompartmentalModel(
        times=[0, 5], compartments=["S", "I", "R"], infectious_compartments=["I"]
    )
    model.set_initial_population(distribution={"S": 900, "I": 100})
    strat = Stratification("age", ["baby", "child", "adult"], ["S", "I", "R"])
    strat.set_population_split({"baby": 0.1, "child": 0.3, "adult": 0.6})
    strat.add_infectiousness_adjustments(
        "I", {"child": adjust.Multiply(3), "adult": adjust.Multiply(0.5), "baby": None}
    )
    model.stratify_with(strat)
    assert_array_equal(
        model.initial_population,
        np.array([90, 270, 540, 10, 30, 60, 0, 0, 0]),
    )

    # Do pre-run force of infection calcs.
    model._prepare_to_run()
    assert_array_equal(
        model._compartment_infectiousness["default"],
        np.array([0, 0, 0, 1, 3, 0.5, 0, 0, 0]),
    )

    # Do pre-iteration force of infection calcs
    model._prepare_time_step(0, model.initial_population)

    # Get multipliers
    infectees = model.compartments[0:3]
    infectors = model.compartments[3:6]

    expected_density = 10 * 1 + 30 * 3 + 60 * 0.5
    expected_frequency = expected_density / 1000
    for infectee, infector in zip(infectees, infectors):
        assert model._get_infection_density_multiplier(infectee, infector) == expected_density

    for infectee, infector in zip(infectees, infectors):
        assert model._get_infection_frequency_multiplier(infectee, infector) == expected_frequency

    # Stratify again, now with overwrites
    strat = Stratification("location", ["urban", "rural"], ["S", "I", "R"])
    strat.add_infectiousness_adjustments(
        "I", {"urban": adjust.Overwrite(1), "rural": adjust.Multiply(7)}
    )
    model.stratify_with(strat)
    assert_array_equal(
        model.initial_population,
        np.array([45, 45, 135, 135, 270.0, 270, 5, 5, 15, 15, 30, 30, 0, 0, 0, 0, 0, 0]),
    )

    # Do pre-run force of infection calcs.
    model._prepare_to_run()
    assert_array_equal(
        model._compartment_infectiousness["default"],
        np.array([0, 0, 0, 0, 0, 0, 1, 7, 1, 21, 1, 3.5, 0, 0, 0, 0, 0, 0]),
    )
    # Do pre-iteration force of infection calcs
    model._prepare_time_step(0, model.initial_population)

    # Get multipliers
    infectees = model.compartments[0:6]
    infectors = model.compartments[6:12]
    expected_density = 5 * 1 + 5 * 7 + 15 * 1 + 15 * 21 + 30 * 1 + 30 * 3.5
    expected_frequency = expected_density / 1000
    for infectee, infector in zip(infectees, infectors):
        assert model._get_infection_density_multiplier(infectee, infector) == expected_density

    for infectee, infector in zip(infectees, infectors):
        assert model._get_infection_frequency_multiplier(infectee, infector) == expected_frequency